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Preface

Many physical, biological, chemical, financial, and social phenomena can be described by
dynamical systems and frequently the dynamics are coupled in a networked structure. The
nature of these connections can be quite different, ranging from situations where connec-
tions express interactions between certain agents in multi-agent systems to situations where
connections are gas pipes in gas transport networks.

Very often the differential equations arising in applications have a rather complex structure
so that analytical solution formulas are not available; in this case, numerical simulations are
a natural tool to gain insights into the solution behavior.

Working Group 5: Numerical Methods and Applications of COST Action 18232 brought
together experts from different fields of mathematics in order to devise and analyse novel
numerical schemes for networked dynamics. This took place in close cooperation with the
more analysis-driven investigations in other working groups.

Due to the different natures of the studied applications the resultant models displayed
a variety of mathematical structures. Thus, different problem-adapted numerical schemes
needed to be developed and different techniques needed to be used for their analysis. With
an eye towards providing suitable tools for different applications the working group members
applied methods from such diverse fields of mathematics as numerical analysis, control theory,
semi-group theory, and homogenization.

The following white paper showcases progress made by the members of the working group
in the last years and relates it to the state of the art in the corresponding areas.
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Chapter 1

Numerical Methods for Networked PDEs

1.1 Wave Dynamics in Quantum Networks with Transparent
Branching Points

In this section various applications of absorbing boundary conditions in different physical
scenarios are discussed, emphasizing their use in modeling reflectionless transport phenomena
for different types of solitons and particles.

The work discussed below considers the wave dynamics in quantum networks with trans-
parent branching points. The latter means that the transmission of waves/particles through
the vertices of the network occurs without reflection. This is done by solving linear and non-
linear Schrödinger equations on metric graphs, for which so-called absorbing vertex boundary
conditions are imposed at the graph vertices to ensure the transparency of the network. Ap-
plications of the results to the modelling and design of various optical fibre networks and
branched nanoscale systems are briefly discussed.

Absorbing boundary conditions at branching points in networks

Quantum graphs have been shown to be accurate models for the study of quantum trans-
port and spectral statistics in nanoscale systems. Recently, such graphs have been studied
experimentally using microwave networks consisting of coaxial waveguides. Zero point energy
in quantum graphs can play an important role in various systems (e.g. polymers, molecular
networks, microwave networks and other supramolecular structures) whose dynamics can be
modelled by quantum graphs, as well as in nanomechanics.

The problem of absorbing boundary conditions (ABCs) for wave equations has attracted
much attention in several practically important contexts. Such boundary conditions are com-
monly considered when investigating two processes: the absorption of particles and waves as
they pass from one domain to another, and the reflectionless transmission of particles (waves)
through the boundary of a given domain.

In general, ABCs can be derived by factorizing the differential operator corresponding to a
wave equation. However, this often leads to a form for the boundary conditions which is much
more complicated than that of the Dirichlet, Neumann and Robin conditions. In addition,
when complemented with ABCs, the wave equation cannot be solved analytically and always
requires the use of numerical methods. The choice of discretisation scheme depends on both
the type of wave equation and the type of process.

The following discussion concerns the application of absorbing boundary conditions to
quantum graphs, considering the problem of reflectionless transmission of the particle through
the vertex of the graph. In particular, the objective is the extension of the classical derivation
of ABCs for Schrödinger equations first to the case of star-shaped graphs, then to more general
quantum graphs.
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The state of the art

The state of the art in applying absorbing boundary conditions [6, 10] to solve wave equations
on quantum networks modeled as metric graphs [94], can be summarised as follows.

Quantum graphs are established models for studying wave phenomena in nanoscale sys-
tems like optical fibers and microwave networks. The research focuses on developing ABCs
for these networks to ensure reflectionless transmission of waves/particles through branching
points (vertices) of the graph. The study uses the linear and nonlinear Schrödinger equations
on these graphs. Classical ABC derivations for Schrödinger equations are being extended to
quantum graphs. Thus the idea is to begin with the simplest case of the star-shaped graph.

The derivation of ABCs is an important step towards solving numerically wave dynamics
in complex quantum networks with minimal reflection at branching points, which is crucial
for accurate simulations in various applications such as the designing of optical fibers and
nanoscale systems.

Driven transparent quantum graph

In the work [142], the authors discuss the concept of quantum graphs with transparent ver-
tices by considering the case where the graph interacts with an external time-independent
field. In particular, the problem of absorbing boundary conditions for quantum graphs is
addressed, building on previous work on absorbing boundary conditions for the stationary
Schrödinger equation on a line. Physically relevant constraints making the vertex transparent
under boundary conditions in the form of (weight) continuity and Kirchhoff rules are derived
using two methods, the scattering approach and absorbing boundary conditions for the time-
independent Schrödinger equation. The latter is derived by extending the absorbing boundary
condition concept to the time-independent Schrödinger equation on driven quantum graphs.
Further, the authors consider how the eigenvalues and eigenfunctions of a quantum graph
are influenced not only by its topology, but also by the shape/type of a potential when an
external field is involved.

The scattering approach

The concept of absorbing boundary conditions has recently been extended to the case of
evolution equations on graphs, by considering linear [141] and nonlinear [140] Schrödinger
equations on graphs and the Dirac equation on quantum graphs [139]. In all cases the focus
was on time-dependent equations.

In [142] the authors instead consider the stationary Schrödinger equation on the star graph
with some potential Vj(x) given on each of its bonds (edges) j :

− d2

dx2
Ψj(x) + Vj(x)Ψj(x) = k2Ψj(x), j = 1, 2, . . . , N,

One of the boundary conditions at the vertex can be written as a generalized form of the
continuity condition

α1Ψ1(0) = α2Ψ2(0) = . . . = αNΨN (0), (1.1)

and the current conservation

N∑
j=1

1

αj

d

dx
Ψj(0) = 0, (1.2)
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where αj ∈ R are some non-zero coefficients.
In this case, the components Ψi,j(x) of the total wave function can be written as

Ψi,j(x) = δj,i e
−i
√

k2−Vj(x)x + σi,j e
i
√

k2−Vj(x)x. (1.3)

The boundary conditions (1.1) and (1.2) at the vertex together with (1.3) can be used to
determine σi,i

σi,i =

1−
N∑
j=1
j ̸=i

α2
i

α2
j

√
k2−Vj(0)
k2−Vi(0)

1 +
N∑
j=1
j ̸=i

α2
i

α2
j

√
k2−Vj(0)
k2−Vi(0)

.

Requiring the reflection probability to be equal to zero yields the energy dependent expression√
k2 − Vi(0)

α2
i

=

N∑
j=1
j ̸=i

√
k2 − Vj(0)

α2
j

.

The condition that all the bond potentials have the same value at the vertex (i.e. V1(0) =
V2(0) = · · · = VN (0)) determines a constraint given by a sum rule

1

α2
i

=
N∑
j=1
j ̸=i

1

α2
j

.

Finally, it is also shown in [142] that one can also derive this sum rule using the concept of
ABCs to derive the conditions for the vertex transparency.

ABCs for the nonlocal nonlinear Schrödinger equation

The work [1] considers the problem of reflectionless propagation of parity-time-symmetric (PT-
symmetric) solitons described by the nonlocal nonlinear Schrödinger equation on a line in the
framework of the concept of absorbing boundary conditions (ABCs) for evolution equations.
ABCs for the nonlocal nonlinear Schrödinger equation are also derived. The absence of
backscattering at the artificial boundaries is confirmed by the numerical implementation of
the absorbing boundary conditions.

The nonlocal nonlinear Schrödinger (NNLS) equation is

i∂tq(x, t) + ∂xxq(x, t) + 2q(x, t)q∗(−x, t)q(x, t) = 0. (1.4)

To derive ABCs for the NNLS equation (1.4), the authors of [1] use the so-called potential
approach which was previously applied to derive ABCs for coupled nonlinear Schrödinger
equations [120]. This allows for the formal reduction of the NNLS equation (1.4) to the linear
Schrödinger equation

i∂tq(x, t) + ∂xxq(x, t) + V (x, t)q(x, t) = 0,

with the potential V (x, t) = 2q(x, t)q∗(−x, t).
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The authors proceed by introducing a new unknown Q(x, t), which is given by the relation

Q(x, t) = e−iV(x,t) q(x, t), V(x, t) =
∫ t

0
V (x, s) ds.

The temporal and spatial derivatives of q can be written as derivatives of Q as

∂tq = eiV(∂t + iV )Q, (1.5)

and

∂xxq = ieiV(∂xxQ+ 2i∂xV∂xQ+ iQ∂xxV − (∂xV)2Q). (1.6)

Thus the Schrödinger equation in terms of Q(x, t) is

L(x, t, ∂x, ∂t)Q := i∂tQ+ ∂2xQ+A∂xQ+BQ = 0, (1.7)

where A = 2i∂xV and B = (i∂xxV − (∂xV)2). Using the pseudo-differential operator calculus,
equation (1.7) can be linearized with

L = (∂x + iΛ−)(∂x + iΛ+) = ∂2x + i(Λ+ + Λ−)∂x + iOp(∂xλ
+)− Λ+Λ−, (1.8)

where λ+ is the principal symbol of the operator Λ+ and Op(p) denotes the associated operator
of a symbol p. The equations (1.7) and (1.8) lead to the system of operators

i(Λ+ + Λ−) = A,

i Op(∂xλ
+)− Λ+Λ− = i∂t +B.

An asymptotic evolution in the inhomogeneous symbols can be written as

λ± ∼
+∞∑
j=0

λ±1/2−j/2,

which, following some calculation, yields the first-order approximation

∂xq|x=−L − e−iπ
4 eiV∂

1/2
t (e−iVq)

∣∣
x=−L

= 0,

∂xq|x=L + e−iπ
4 eiV∂

1/2
t (e−iVq)

∣∣
x=L

= 0,

and the second-order approximation

∂xq|x=−L − e−iπ
4 eiV∂

1/2
t (e−iVq)

∣∣
x=−L

− i
∂xV

4
eiVIt(e

−iVq)
∣∣
x=−L

= 0,

∂xq|x=L + e−iπ
4 eiV∂

1/2
t (e−iVq)

∣∣
x=L

+ i
∂xV

4
eiVIt(e

−iVq)
∣∣
x=L

= 0.

Recall that the operator ∂1/2t , which denotes the half order fractional time derivative
operator, is defined as

∂
1/2
t f(t) =

1√
π
∂t

∫ t

0

f(s)√
t− s

ds,

and the operator It(f) reads

(
It(f)

)
(t) =

∫ t

0
f(s) ds.
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1.2 Numerical Solutions to Boundary Coupled Problems

Boundary coupled problems arise naturally in the mathematical description of applications
where different physical/biological/etc. processes take place inside and on the boundary of a
(e.g. spatial) domain. Then the solution of the differential equation posed on the boundary
implies a boundary condition for the problem inside the domain. An example is the modelling
the osmosis of a cell.

A particularly important field nowadays is the analysis of dynamical networks and their
numerical treatment. As will be shown at the end of the section, dynamical network pro-
cesses can also be written in the form of boundary coupled problems. Although there is an
extensive literature treating the well-posedness, spectral properties, long time behaviour, and
controllability of diffusion and/or wave equations on networks (see e.g. [43, 55, 87, 88]), the
research of their numerical analysis is very incomplete. This section describes recent progress
on the numerical treatment of dynamical networks in an abstract setting by using functional
analytic tools.

The abstract framework of boundary coupled problems also applies to other contexts,
including boundary feedback problems with bulk and boundary equations (see e.g. [23, 39, 40]),
dynamic boundary conditions (see e.g. [54, 86, 135]), and diffusion processes on networks with
boundary conditions satisfying ordinary differential equations in the vertices (see e.g. [107,
108, 123]).

The novelty of the approach described in this section is the application of operator splitting
(similar to the bulk–surface splitting in [86]) together with an auxiliary step which has been
missing from the “naive” algorithm presented in the literature before. This makes it possible
to achieve the expected convergence order. In what follows the results of the publications
[35] and [36] are generalized, which were carried out in the framework of the COST Action
Mat-Dyn-Net.

Abstract setting

Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be Banach spaces over C or R, and consider the following
operators.

Assumptions 1.2.1. (i) A : D(A) ⊂ X → X and B : D(B) ⊂ Y → Y are linear and
invertible.

(ii) L : D(A) → Y is linear, surjective, and bounded on D(A) with respect to the graph norm
of A,

(iii)
(
A
L

)
: D(A) → X × Y is closed,

(iv) A0 := A|ker(L) is invertible and generates an analytic semigroup,

(v) D0 := L|−1
ker(A) : Y → ker(A) ⊂ X is called the abstract Dirichlet operator (which exists

under these assumptions),

(vi) Q(t) = D0e
tB − etA0D0 + Q0(t), Q0(t)y := −

∫ t
0 e

(t−s)A0D0e
tBBy ds, y ∈ D(B), and

Q(t) ∈ L(Y,X) for all t ≥ 0, moreover, lim sup
t→0+

∥Q(t)∥ <∞,

(vii) F := (F1,F2) : D → X × Y is Lipschitz continuous on the set

S :=
{
v ∈ X × Y : ∥(x(t), y(t))− v∥ ≤ R for some t ∈ [0, T ]

}
⊆ D (1.9)

such that F2 : S → D(B) is Lipschitz continuous and F2(x(t), y(t)) ∈ D(B2) for all
t ∈ [0, T ], moreover, sup

t∈[0,T ]
∥B2F2((x(t), y(t))∥ <∞.
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Then for any given elements x0 ∈ X and y0 ∈ Y , the boundary coupled problem for the
unknown functions x : [0,∞) → X and y : [0,∞) → Y takes the following form:

d
dtx(t) = Ax(t) + F1

(
x(t), y(t)

)
, t ≥ 0, x(0) = x0 ∈ X,

d
dty(t) = By(t) + F2

(
x(t), y(t)

)
, t ≥ 0, y(0) = y0 ∈ Y,

Lx(t) = y(t), t ≥ 0.

(1.10)

As an example one can think of a diffusion process inside and on the boundary of the bounded
(spatial) domain Ω ⊂ Rd, when X = L2(Ω), Y = L2(∂Ω), and A = ∆Ω is the Laplacian,
B = ∆∂Ω is the Laplace–Beltrami operator, and L : H1/2(Ω) → L2(∂Ω) is the trace operator
which describes the coupling itself.

Given the form of the problem (1.10), it seems a natural idea to use operator splitting
in the following way. Choosing a time step τ > 0, one can solve the problem given on the
boundary with the given initial condition y0, and obtain the value of y(τ). Using this as
the boundary value, the problem inside the domain can be solved and the approximation
of x(τ) obtained. Then the trace of x(τ) on the boundary becomes the initial condition of
the equation for y in the next step. Iterating the above algorithm in n steps, yields the
approximation of x(nτ) and y(nτ).

The “naive” algorithm presented above, however, leads to a numerical method that suffers
from order reduction, i.e., does not converge with the expected order, see e.g. [86]. In [35, 36],
the authors’ goal was to use operator splitting to write a numerical method that converges
with the expected order (first-order for Lie splitting, second-order for Strang). To do this, one
needs to add an additional step to the above algorithm, namely to extend the approximation
of the function By(nτ) (harmonically in case of the Laplacian) to the interior of the domain.
The idea was inspired by the results of the work of [23], in which the boundary coupled
problem (1.10) for F = 0 is rewritten as an abstract initial value problem on the Banach
space U := X × Y for the unknown function u = (x, y) : [0,∞) → U of the form{

d
dtu(t) = Au, t > 0,

u(s) = u0,
(1.11)

with

A :=

(
A 0
0 B

)
, D(A) :=

{
(x, y) ∈ D(A)×D(B) : Lx = y

}
.

Under Assumptions 1.2.1, the result [23, Thm. 2.7] implies that A generates the following
operator semigroup on U :

etA =

(
etA0 Q(t)
0 etB

)
.

Note that if B generates an analytic semigroup, then etA is analytic as well. With the
notations

A0 :=

(
A0 −D0B
0 B

)
, D(A0) := D(A0)×D(B), R0 :=

(
I −D0

0 I

)
one has A0 = R0A0R−1

0 . To apply an operator splitting procedure, the authors write this
operator as the sum A0 = A1 + A2 + A3, where the sub-operators and the corresponding

8



semigroups have the following forms on X ×D(B):

A1 =

(
A0 0
0 0

)
, A2 =

(
0 −D0B
0 0

)
, A3 =

(
0 0
0 B

)
,

D(A1) = D(A0)× Y, D(A2) = D(A3) = X ×D(B),

etA1 =

(
etA0 0
0 I

)
, etA2 =

(
I −tD0B
0 I

)
, etA3 =

(
I 0
0 etB

)
.

In what follows the results for the linear case F = 0 and the semilinear case F ̸= 0 will be
presented.

Results in the linear case

In [35], the authors consider the linear case F1 = F2 = 0. Then, the solution of the boundary
coupled problem (1.10) is given by u(t) = etAu0 = R−1

0 etA0R0u0 = R−1
0 et(A1+A2+A3)R0u0.

Then the operator splitting procedures are applied, and the authors obtain a numerical method
of the form u

(τ)
n = N (τ)nu0, where

N (τ) = R−1
0

(
etA0 Q(τ)
0 etB

)
R0, and

Q(τ) =


−τeτA0D0BeτB for the Lie,
−τe

τ
2
A0D0Be

τ
2
B for the Strang,

− τ
2

(
eτA0D0BeτB +D0B

)
for the 1/2-weighted

operator splittings, and u0 = (x0, y0). One can note that in all three cases the operator Q(τ)
is an approximation to the operator Q0(τ).

Theorem 1.2.2 ([35, Thm. 4.9, Thm. 4.11, Thm. 4.13]). For the Strang and the 1/2-weighted
splittings, let γ ∈ (0, 1] be a constant for which ran(D0) ⊆ D((−A0)

γ) is satisfied. Then, under
Assumptions 1.2.1, for every T > 0, there exists a constant C > 0, independent of n and τ ,
such that the estimates of the global error of the operator splittings are satisfied:

∥u(nτ)− u(τ)n ∥ ≤ Cτ | log τ |
(
∥By0∥+ ∥B2y0∥

)
, y0 ∈ D(B2), for the Lie,

∥u(nτ)− u(τ)n ∥ ≤ Cτ1+γ | log τ |
(
∥By0∥+ ∥B2y0∥+ ∥B3y0∥

)
, y0 ∈ D(B3),

for the Strang and the 1/2-weighted operator splittings for all n = 2, 3, . . . and t ∈ [0, T ].

In all cases, the statements follow from the result [35, Prop. 4.3], namely, that the order
of the global error is the same as the order of how Q(t) approximates the operator Q0(t).
Thus, in the proof, the authors estimate in each case the difference ∥Q(τ)−Q0(t)∥. To do so,
they use the relation ∥(−A0)

1−γetA0∥L(X) ≤ tγ−1 for bounded analytic semigroups and their
generator, the (time) exponential boundedness of the semigroups, and the norm estimate of
the local errors.

The results are also illustrated by numerical experiments. For the first problem, the exact
solution is known, so the error of the numerical method can be exactly calculated. In the
second case, the exact solution is not known, so the error is approximated using a reference
solution. The relative global error analysed in both cases is given by

ε(ntτ) :=
∥u(ntτ)− u

(τ)
nt,nx

∥2
∥u(ntτ)∥2
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where ∥ · ∥2 is the Euclidean norm and unt,nx ∈ Rnx is the vector of approximations of the
values (u(ntτ))(jh), j = 0, . . . , nx, where h > 0 is the spatial grid size. Due to the relation
ε(τ) ≤ Cτp, the value of the function τ 7→ ε(τ) can be plotted on a logarithmic scale for
certain τ values, and then by fitting a line to the resulting points, its slope gives a numerical
approximation to the order of the method. This is called the numerical order of the method.
Tables 1.1 and 1.2 contain the values of the numerical order. Note that in the case of Θ ̸= 1

2 ,
the authors did not analytically study the Θ-weighted splitting, but the numerical results are
in line with expectations.

Table 1.1: Numerical orders of operator splittings in case of known exact solution
(γ = 0.25, nx = 32768), [35, Table 1].

splitting Lie Strang Weighted Θ = 0.3 Weighted Θ = 0.5

expected order ∼ 1 ∼ 1.25 ∼ 1 ∼ 1.25
numerical order 1.0004 1.2405 1.0549 1.1646

Table 1.2: Numerical orders of operator splittings in case of unknown exact solution
(γ = 0.25, nx = 128), [35, Table 2].

splitting Lie Strang Weighted Θ = 0.3 Weighted Θ = 0.5

expected order ∼ 1 ∼ 1.25 ∼ 1 ∼ 1.25
numerical order 1.0100 1.3056 for log τ > −2.5 1.0256 1.5765

1.9812 for log τ < −2.5

The tables show that the numerical values are in agreement with the theoretical results,
which can be considered as sharp in this sense. The methods developed therefore indeed
converge in the expected order.

Results in the semilinear case

In [36], the authors study the semilinear case. If F1 ̸= 0 and/or F2 ̸= 0 in the boundary
coupled problem (1.10), the solution is given by the variation of constants formula as

u(t) = etAu0 +

∫ t

0
e(t−s)AF

(
u(s)

)
ds, t ≥ 0,

where the semigroup etA is approximated as described in the previous section:

etA ≈ Ek =

(
etA0 D0e

tB − etA0D0 +Qk(τ)
0 etB

)
, k = 1, 2, where (1.12)

Q1(t) = −tetA0D0BetB for the Lie splitting,

Q2(t) = −te
t
2
A0D0Be

t
2
B for the Strang splitting.

In the semilinear case, however, it is also necessary to approximate the integral, which will
be done using the (first-order) left quadrature for the Lie splitting and the (second-order)
midpoint quadrature for the Strang splitting. These steps will lead to a method of the form
u
(τ)
n = N (τ)n(u0), n ∈ N, where N (τ) is now not necessarily a linear mapping:

N (v) =

{
E1(τ)

(
v + τF(v)

)
for the Lie splitting,

E2(τ)v +
τ
2E2(τ/2)

(
E1(τ/2)

(
v + τ

2F(v)
))

for the Strang splitting.
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The term E1(τ/2)(v + τ
2F(v)) in the Strang splitting formula is an approximation of the

value of the function e(τ−s)AF(u(s)) at s = τ/2 by the Lie formula with time step τ/2. The
following results are obtained.

Theorem 1.2.3 ([36, Thm. 2.5]). Under Assumptions 1.2.1, for the Lie splitting, there exist
constants τ0 > 0 and C > 0 such that for any step size τ ≤ τ0, the following error estimate
holds for any nτ ∈ [0, T ]:

∥u(nτ)− u(τ)n ∥ ≤ Cτ | log τ |.

Also in the semilinear case, the numerical results illustrate the theoretical results obtained.
The numerical convergence order corresponds to the expected first order.

Relevance to dynamical networks

The above methods can be applied to dynamics on networks by writing them as boundary
coupled systems (1.10). The following example illustrates how diffusion on a network with
mass storage at the nodes can be expressed in the form (1.10).

Let vi (i = 1, . . . , n) and ej (j = 1, . . . ,m) denote the vertices and edges of a graph,
respectively. Then one chooses the spaces above as follows. The “spatial” domain is [0, 1], then
X = L2(0, 1)n and Y = Cm are the function spaces along the edges and vertices, respectively.
The corresponding operators have then the forms A = diag(∂xx) for the diffusion process inside
the domain with D(A) = H2(0, 1)n∩D(L) and D(L) = {x ∈ C(0, 1)n : xj(vi) = xℓ(vi) if vi =
ej ∩ eℓ}. Note that, by Assumption 1.2.1(iv), the restriction of operator A should generate an
analytic semigroup which means that the corresponding PDE should be parabolic, hence, the
diffusion process is a suitable choice. Furthermore, B ∈ Cm×m then corresponds to a system
of ordinary differential equations on the edges. It is worth mentioning that F2(x, y) = Cx
in this case, where the linear operator (C,D(A)) incorporates the Kirchhoff-type boundary
condition posed at the vertices. Since it is unbounded, the results need to be generalized in
this case.

Numerical experiments show that the results above offer reliable numerical methods which
solve the dynamical network problem efficiently and converge of the expected order, that is,
they do not suffer from order reduction.

1.3 Mixed Finite Elements for Euler Equations on Networks

Several models describing gas flows in pipe networks exist in the literature, see [20, 41].
Many of these are concerned with long time and space scales, which correspond to the low
Mach and large friction asymptotics of the isothermal Euler equations. It is well known that
classical schemes for hyperbolic conservation laws (in simple domains as well as on networks)
do not work well in the low Mach regime [38], which creates a need for specific “asymptotic
preserving” schemes.

In [50] the authors propose an asymptotic preserving scheme for the barotropic Euler
equations, which model gas flow through (networks of) pipes. The 1-dimensional barotropic
Euler equations with quadratic friction are given by{

∂tρ+ ∂xm = 0, x ∈ [0, ℓ], t > 0

∂tm+ ∂x

(
m2

ρ + p(ρ)
)
= −γ

ρ |m|m, x ∈ [0, ℓ], t > 0
(1.13)
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on a pipe of length ℓ, where ρ is the density, m = ρv the mass flow rate, v the velocity,
p = p(ρ) a strictly monotone pressure law and γ > 0 a friction coefficient which describes the
friction of the gas at the pipe walls. Rewriting the system in a port-Hamiltonian form and
rescaling the system to long temporal and spatial scales, large friction and small, subsonic
velocities, yields the system{

∂tρ+ ∂x(ρv) = 0, x ∈ [0, ℓ], t > 0

ε2∂tv + ∂x
(
1
2ε

2v2 + P ′(ρ)
)
= −γ|v|v, x ∈ [0, ℓ], t > 0

(1.14)

with scaling parameter ε > 0 and smooth and strictly convex pressure potential P = P (ρ),
which is connected to the pressure law by p′(ρ) = ρP ′′(ρ). Based on this system the authors
define a numerical scheme by applying a mixed finite element method in space and an implicit
Euler method in time. Similar schemes exist in the literature for linear wave equations [62, 80],
isentropic flow in networks [47, 48], and port-Hamiltonian systems [21, 96].

The main result of [50] is the uniform convergence of the numerical scheme. More precisely,
if (1.14) together with suitable boundary and initial conditions admit a subsonic, bounded
state solution, then there exist ∆t > 0 sufficiently small and ∆x ≈ ∆t such that the discrete
scheme admits a unique discrete bounded state solution (ρnh,m

n
h)n≥0 which satisfies

∥ρ(tn)− ρnh∥2L2(0,ℓ) + ε2∥m(tn)−mn
h∥2L2(0,ℓ) +∆t

n∑
i=1

∥m(ti)−mi
h∥3L3(0,ℓ)

≤ C(∆t2 +∆x2),

where the constant C can be chosen independent of ε. The proof is based on estimating the
difference between the exact solution and the discrete solution in terms of relative energy, in
similar fashion to [49].

The scheme and convergence result can be extended to networks by complementing the
system with coupling conditions enforcing conservation of mass and continuity of the specific
enthalpy h := 1

2ε
2v2 + P (ρ). These are energy conserving at pipe junctions [117], hence one

may exploit the Hamiltonian formulation to arrive at the extension.

1.4 Numerical Approximation and Control of PDEs
on Networks via Random Batch Methods

The Random Batch Method (RBM) is a numerically efficient technique for solving large
scale dynamical systems, originally introduced in the context of interacting particle systems
[22, 78, 79]. This method efficiently combines the random nature of stochastic gradient descent
with the strategy of dividing data into smaller groups or batches. It is therefore inspired
by classical domain decomposition and splitting techniques, but with the added feature of
randomization, which reduces the computational cost, given that large dimensional systems
can be intractable in the deterministic setting.

Investigating the RBM in control for both finite-dimensional and systems of partial differ-
ential equations (PDEs), with an aim to provide rigorous proofs of convergence and combine
it with Model Predictive Control (MPC), is the focus of one of the members of the Action, in
conjunction with others in their group. The main results in these directions are as follows:

In [134], considering linear finite dimensional systems and using matrix decomposition it
is shown that the solution of such a randomized dynamical system closely approximates that
of the original system in expectation, provided that the time steps are sufficiently small.
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In addition, the linear quadratic regulator control problem was analyzed and similar con-
vergence results were achieved. These results were extended in the context of Model Predictive
Control (MPC), [84, 133].

In the forthcoming paper [75], the authors extend this analysis to PDEs in networks, using
the combination of the numerical approximation of the PDE by classical finite-difference and
finite-element schemes and the RBM-MPC methodology above. This allows to exploit the
splitting of the network into subnetworks, implemented, for instance, by spectral techniques,
along the nodal sets of the eigenfunctions of the Laplacian or the governing operator (see
Figure 1.1).

Figure 1.1: A complex graph decomposed into subgraphs, represented by various colours, by
means of spectral clustering. This decomposition offers a natural splitting method to apply
the combination of RBM-MPC. It also induces a natural partitioning of the matrices involved
in the discretized dynamics.

1.5 A Physics Informed Neural Network Preserving Energy
Dissipation of Allen-Cahn Equations

With advances in computing power and the rapid growth of available data in recent years,
deep learning techniques, a subset of machine learning, have become a promising and popular
methodology to solve different types of problems in science and engineering. Deep learning
is principally based on complex, non-linear combinations of input and output features using
multiple hidden layers and the back-propagation algorithm, which works by increasing the
weights of the combinations which are judged to be “useful” (i.e. which produce good results)
during the training process, and decreasing the weights of others.

Alongside the remarkable success of deep learning in such various fields as visual recog-
nition [89] and cognitive science [92], efforts have also been made to use deep learning to
solve partial differential equations (PDEs); see, e.g, [46, 95, 115, 125]. Among them, Physics
Informed Neural Networks (PINNs), introduced in [115], have received great attention thanks
to their flexibility in tackling a wide range of forward and inverse problems involving PDEs.
To predict the dynamics of the underlying PDE, the physics of the problem is imposed on the
loss function in the PINN architecture by adding governing equations, boundary conditions,
and initial conditions. Since their introduction, PINNs have been used to solve a variety of
problems in computational science and engineering; see, e.g., [25, 82, 101, 103] and references
therein.

Although the standard PINN (std-PINN) has been widely accepted and has yielded re-
markable results across a range of problems, it is not always capable of solving nonlinear PDEs
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containing sharp transition layers, discontinuities, or shocks, such as the Allen–Cahn equation
[2]. To improve the performance of PINNs while solving Allen–Cahn equations, the authors
in [61] proposed two specially designed convolutional neural networks (CNNs) in which the
loss functions correspond to the fully-discrete systems obtained from finite difference methods
in both space and time. Similarly, multi-step discrete time models with adaptive collocation
strategy were considered in [137]. The authors in [136] introduced the idea of adaptivity in
both time and space by sampling the data points, while in [104], the same neural network was
retrained over successive time segments, while satisfying the obtained solution for all previous
time segments. An alternative approach considered by [124] consists of reducing the system
of the Allen–Cahn equation to first-order problem and subsequently using deep learning to
approximate the converted minimization problem.

The authors of [91] propose a novel methodology based on preserving the energy dissipation
to predict the dynamics of the Allen-Cahn equation. The proposed network approach, outlined
below, guarantees the decay of energy and also plays a key role in accurately learning the
dynamics of the Allen-Cahn equation.

Allen–Cahn equations

Allen–Cahn equations were introduced in [2] to describe the motion of anti-phase boundaries
in crystalline solids at a fixed temperature. They are a particular case of gradient flows in
the form of

∂tu = −µ(u) δE(u)
δu

,

where δE(u)/δu represents the variational derivative of the free energy taken in the L2(Ω)-
norm with Ω ⊂ Rd (d = 1, 2, 3) as follows

E(u) =
∫
Ω

(
ϵ2

2
|∇u|2 + F (u)

)
dx.

Then, the Allen–Cahn equation is given by

∂tu = µ(u)(ϵ2∆u− f(u)), (x, t) ∈ Ω× (0, T ], (1.15)

where u denotes the concentration of one of the species of the alloy, ϵ represents the small
interfacial length during the phase separation process, and µ(u) is the non–negative mobility
function. The nonlinear function f(u) is the derivative of a quartic double–well free energy
functional F (u) = 1

4(1−u
2)2. Further, the total free energy of Allen–Cahn equations decreases

with time for µ(u) > 0, that is,

dE(u(t))
dt

≤ 0. (1.16)

However, it is not always easy to satisfy the energy dissipation (1.16) numerically due to the
existence of a nonlinear term and of the small interfacial length parameter ϵ. Motivated by
the conservation of the related quantities, such as mass, energy, and momentum, the authors
of [91] propose the penalization of the energy constraint (1.16) in order to preserve the energy
decay of the Allen–Cahn equations (1.15).
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Numerical algorithm and results

The PINN architecture used to investigate the dynamics of a one-dimensional Allen–Cahn
equation with periodic boundary conditions is depicted in Figure 1.5. Figure 1.3 indicates
that the learned solutions are accurate and capture the correct dynamics when compared
with the reference solution, obtained by using the chebfun package [44]. In Table 1.3, the
performance of the new approach (named “Energy-PINN”) is compared with different existing
approaches in the literature; see, e.g., [104, 115, 136]. Note that strategies based on adaptive
approaches to classical numerical techniques are also used in the numerical simulations. It is
observed that the Energy-PINN method is highly accurate in comparison to other methods.

x

t
...

... û(x, t)

identity

ResNet

Governing Equation:
∂tu− 10−4∂xxu+ 5(u3 − u) = 0, x ∈ [−1, 1], t ∈ [0, 1]

Boundary Conditions:
u(−1, t) = u(1, t), ∂xu(−1, t) = ∂xu(1, t), t ∈ [0, 1]

Initial Condition:
u(x, 0) = x2 cos(πx), x ∈ [−1, 1]

+

Energy Dissipation Condition:
dE(û(t))

dt
≤ 0

lossr

lossb

lossi

losse

Loss

Figure 1.2: Workflow of the proposed PINN framework.
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Figure 1.3: Predicted (red) and reference (blue) solutions.

Table 1.3: Performance comparison.
Method relative ℓ2-norm
std-PINN [115] 0.9919
XPINN [77] 0.9612
bc-PINN [104] 0.0701
bc-PINN + logresidual [104] 0.0300
ACP [136] 0.0233
bc-PINN + ICGL + TL [104] 0.0168
Energy-PINN 0.0053
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1.6 Homogenization Problems on Graphs

This section addresses two instances of homogenization problems posed on periodic planar
graphs.

In the first problem one considers time-dependent heat conduction on a planar one-
dimensional periodic network structure with periodic unit cell ΓY . This simple problem
provides a useful setting in which to develop techniques necessary for the homogenization
of equations posed on graphs, see [99]. On the edges of a graph the one-dimensional heat
equation is posed, while the Kirchhoff junction condition is applied at all (inner) vertices.
Using the two-scale convergence adapted to homogenization of lower-dimensional problems
one can obtain the limit homogenized problem defined on a two-dimensional domain that is
occupied by the mesh when the mesh period δ tends to 0. The homogenized model is given
by the classical heat equation with the conductivity tensor depending on the unit cell graph
only through the topology of the graph and lengths of its edges. In [99] it is proven that the
sequence of solutions of heat conduction problems on a graph (two-scale) converges to the
function u0 which is the unique solution of the following problem:

Find u0 ∈ L2(0, T ;H) such that ∂tu
0 ∈ L2(0, T ; L2(Ω)),

where H = {v ∈ H1(Ω) : v = 0 on ΓD}, such that for all v ∈ H∫
Ω
ρcp∂tu

0(t,x)v(x)dx+

∫
Ω
a(x)Ahom∇u0(t,x) · ∇v(x)dx =

∫
Ω
fhom(t,x)v(x)dx,

(1.17a)

u0(0,x) = uinit(x), x ∈ Ω,
(1.17b)

where uinit is the initial condition, the homogenized source is given by

fhom :=
1

|ΓY |

∫
ΓY

f(·, ·,y) ds(y) (1.18)

and where the constant 2-by-2 symmetric and positive definite matrix Ahom (homogenized
tensor) is given by

Ahom :=
1

|ΓY |

∫
ΓY

(t(y) + ∂Γϕ(y)) (t(y) + ∂Γϕ(y))
T ds(y), (1.19)

where ϕ ∈ H1
#(ΓY )

2, i.e. the space of periodic H1 functions, is the unique solution (up to an
additive constant) of the canonical problem on the unit cell ΓY∫

ΓY

∂Γϕ(y)∂Γψ(y) ds(y) = −
∫
ΓY

t(y)∂Γψ(y) ds(y), ∀ψ ∈ H1
#(ΓY ). (1.20)

Here t is the unit tangent line on the graph edge and ∂Γ denotes the tangential derivative
on edges. In [99] the well-posedness of the limit problem is shown and a purely algebraic
formula for the computation of the homogenized conductivity tensor is given. The analysis is
complemented by numerical experiments showing a convergence to the limit problem where
the convergence order depends on the unit cell pattern ΓY .

The second problem considers the homogenization of the equilibrium of a periodic plane
network of elastic rods with the unit cell ΓY . In this case the standard reference is [28]
where a simple plus sign unit cell geometry is analyzed by first taking the thickness of the
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plate to zero, then performing homogenization of the obtained plate type equation and then
taking the horizontal thickness of bars to zero. Alternatively, [53] and [26] consider the same
problem, but the authors begin by homogenizing and then take first the plate thickness and
second the horizontal thickness to zero. Another approach can be found in [65] and [27] where
simultaneous homogenization and dimension reduction is made. The obtained cell problem,
typical in homogenization is then a 3D problem.

In contrast to the above mentioned approaches the authors of [98] model elastic rods by
a Naghdi/Timoshenko type one-dimensional curved rod model and replace the 3D model by
the 1D model and then homogenize, treating rod thickness as a small parameter of the cell
size. Using techniques developed in [99] one can derive the model for the structure under the
transversal forcing. The novelty of the approach in [98] is twofold. Firstly, homogenization is
performed on a system of ordinary differential equations on a graph. Secondly, while this type
of problem has been analyzed for general scalar second or fourth order problems in [144], [15]
and [17], it is newly applied to the 1D model of elastic rods. Related to the elasticity problem
of thin rod-like structures, the measure fattening approach has been applied in [16] and [144]
making 3D structure from the graph and using the two-scale convergence with respect to
measure.

The limit model obtained in [98] is given by a fourth order equation in the form of an elastic
plate equation formulated on a two-dimensional domain with effective elasticity coefficients
that depend on the local graph geometry in the local unit cell as is typical in homogenization.
The homogenized problem for the transversal displacement u03 is given by:

Find u03 ∈ V = {v ∈ H2(Ω) : v|∂Ω = 0} such that∫
Ω
Ahom∇2u03 · ∇2v3 dx =

∫
Ω
fhom,3v3 dx,

(1.21)

where v3 ∈ V and the homogenized tensor Ahom is given in terms of the solution of four
canonical problems on the unit cell ΓY . These canonical problems are given as a system
of ordinary differential equations on the unit cell ΓY which formulate the one-dimensional
model for thin rod-like elastic structures. For the cell structures with piecewise straight
edges the effective coefficients can be calculated as an exact solution of a system of algebraic
equations. Based on this result, in [98] the homogenized tensor is compared – for several
unit cell geometries – with the results from [53] and [28] and different coefficients in the
equation are obtained. This non-commutativity of the limits is typical in homogenization and
dimension reduction.
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Chapter 2

Control of PDEs on Networks

2.1 Limits of Stabilization for Networked Hyperbolic Systems

In many papers on the control of networks, the analysis is restricted to the case of tree-shaped
graphs. However, it is very important to collect knowledge about the effect of cycles in the
network. In [71], this is done for a networked system where the dynamics on each edge are
governed by a wave equation with a linear source term. At the vertices, the states are coupled
by node conditions that require the continuity of the state and that the normal derivatives
sum up to zero. In order to assess the limits of controllability a specific example is studied:
A network consisting of a circle and two additional edges, where both arcs of the circle have
the same lengths. Feedback control occurs at one boundary node, while a Dirichlet boundary

0

L1 with feedback control
∂xu

1(t, L1) = −K1∂tu
1(t, L1)

0 L2

0 L3

0 with boundary condition
u4(t, 0) = 0

L4

Arc 2

Arc 3

Arc 1 Arc 4

Figure 2.1: Diagram of the considered example network

condition is prescribed at the other. For k ∈ {1, 2, 3, 4} let real numbers ck > 0, εk ≥ 0 be
given, then the following system is considered where each pipe is parameterized from 0 to
Lk > 0 where Lk is its length:

∂ttu
k = ∂xxu

k − 2εk∂tu
k − (ε2k − c2k)u

k, t ∈ (0,+∞), x ∈ [0, Lk], k ∈ {1, 2, 3, 4},
u1(t, 0) = u2(t, 0) = u3(t, 0),

u2(t, L2) = u3(t, L3) = u4(t, L4),

Σk=1,2,3∂xu
k(t, 0) = 0,

Σk=2,3,4∂xu
k(t, Lk) = 0,

u4(t, 0) = 0,

∂xu
1(t, L1) = −K1∂tu

1(t, L1).

(2.1)

It is shown that the system is stabilizable if the lengths of the arcs in the cycle are suffi-
ciently small. However, if the lengths of the arcs are too large, the system is not stabilizable.
It is shown that the situation is robust with respect to small perturbations of the arc lengths.
This shows that the length of the edges is a decisive parameter in the study of boundary
control problems for systems with a cycle.
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2.2 Boundary Null Controllability of Strongly Degenerate
Hyperbolic Systems on a Star-Shaped Planar Network

This section describes recent progress in the study of boundary exact null controllability
for the simplified one-dimensional hyperbolic model of a multi-body structure consisting of
a finite number of flexible strings distributed along a star-shaped network with a defect at
the common node. In principle, damage modeling is a well-understood topic in continuum
mechanics. However, when it comes to optimal control problems for degenerate hyperbolic
equations posed on singular graphs, despite the practical relevance of such systems, the theory
remains underdeveloped. A simple illustration of the usefulness of these problems is the
following: a given serially connected system of beams (or bars) will probably develop damage
at the connection point if that point is a result of welding or gluing.

In the one-link case, which considers e.g. a single string or beam, damage is only modeled
at the ends. In contrast, for a serial or more general network structure as considered below,
the transmission conditions at nodes where damage occurs depend on the kind of traces that
can be drawn from functions and their derivatives at such nodes, and as such can be difficult
to determine. This makes constructing the network out of single elements using anticipated
transmission conditions at the nodes extremely challenging.

As a result, the authors of [85] instead use singular measures as support for a given
string in the network in order to model planar networks of scalar strings. They consider the
present activity in this field as the first attempt to investigate this class of problems from
a mathematical control perspective in the context of partial differential equations on metric
graphs.

Statement of the problem

Let Ω be an open bounded set in R2 such that 0 is an interior point and Ω has a sufficiently
smooth boundary ∂Ω. Let I1, I2, . . . , IN be a collection of segments starting at the origin
and directed along the vectors v1, v2, . . . , vN . The remainder of the discussion rests on the
following assumptions:

Assumptions 2.2.1. 1. vi
|vi| ̸=

vj
|vj | for i ̸= j,

2. Ii ⊂ Ω ∀ i = 1, . . . , N , and

3. all the end points of these segments K = {Mi, i = 1, . . . , N} belong to the boundary,
K ⊂ ∂Ω.

The length of the segment Ii is denoted by ℓi. In the sequel, the object G =
(
K ∪

{0}, {I1, . . . , IN}
)

is called a star-shaped planar network. On each interval (edge of the net-
work) one chooses an orientation in accordance to the direction of the vectors vi. As a result,
Ii can be parametrized as a function of its length by means of the function zi : [0, ℓi] → Ii,
i.e.,

zi(ξ) = ξ
vi

|vi|R2

, ∀ ξ ∈ [0, ℓi], |zi(ξ)| =
√
z2i,1 + z2i,2 = ξ, and zi(ℓi) =Mi.

Definition 2.2.2. A function a : Ω → R is called an admissible weight function if:

(i) a ∈ C(Ω) ∩ C1(Ω \ {0});

(ii) a(0) = 0 and a(x) > 0 for each x ∈ Ω \ {0};
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(iii) There exists an open convex neighbourhood U ⊂ Ω of the origin in R2 such that

(∇a(x), x)R2 > 0 ∀x ∈ (Ii ∩ U) \ {0},

ηi,a := sup
x∈Ii∩U

(∇a(x), x)R2

a(x)
= lim

x→0,x∈Ii∩U

(∇a(x), x)R2

a(x)
< 2,

a

([
vi
|vi|

])
∈ C [ηi,a] ([0, ℓi])

(2.2)

for each i ∈ {1, . . . , N}, where [·] stands for the integer part.

The points where the intervals Ii intersect the boundary of the neighbourhood U are
denoted Li for each i = 1, . . . , N . So, Ii ∩ ∂U = {Li} and so Li = ℓ∗i

vi
|vi| for some ℓ∗i ∈ (0, ℓi].

Moreover, if a : Ω → R is an admissible weight function, then relation (2.2) implies that, for
each i ∈ {1, . . . , N}, the mapping x 7→ a (x) is monotonically increasing along the interval
(Ii ∩ U) \ {0}.

With each segment Ii, one associates a singular measure µi concentrated on it, where it
is assumed that µi is uniformly distributed on Ii and coincides with Lebesgue measure L1.
Setting dµ =

∑N
i=1 dµi, one can see that µ is a singular measure with respect to the Lebesgue

measure L2, and µ
(
Ω \ ∪N

i=1Ii
)
= 0. Therefore, any functions f = f(x) and g = g(x) taking

the same values on the planar network G coincide as elements of L1(Ω, dµ), provided they
have finite norms in this Lebesgue space.

In [85] the authors study the well-posedness and boundary controllability of the following
Cauchy–Dirichlet problem

∂ttu− divµ(a∇µu) = 0 in (0,∞)× Ω,

u(t,Mi) = fi(t) for a.a. t ∈ (0,∞) and i = 1, . . . , N,

u(0, x) = y0(x), ut(0, x) = y1(x) for µ-a.a. x ∈ Ω,

(2.3)

where (y0, y1) is a given initial state, a : Ω → R is a weight function with properties (i)–(iii),
and fi ∈ L2

loc(0,∞), i = 1, . . . , N , are control functions. Here, ∇µu stands for some µ-gradient
of the function u, and divµ is the divergence operator with respect to the singular measure µ.

The degeneracy of the hyperbolic system (2.3) at the central node x = 0 is proposed to
be measured by the parameter ηa which is defined as

ηa = max
i∈{1,...,N}

[
lim

ξ→0+

ξ

a
(
ξ vi
|vi|

) d

dξ
a
(
ξ
vi
|vi|

)]
,

where (∇a(x),vi)R2
|vi|R2

= da
dvi

is the directional derivative of a = a(x) along the vector vi. In
particular, (2.3) is weakly degenerate if ηa ∈ [0, 1) and strongly degenerate if ηa ∈ [1, 2). It
is shown in [85] that the boundary observability and null controllability properties no longer
hold true if ηa ≥ 2. In particular, the observability time blows up when ηa converges to 2
from below.

The main result of [85] can be stated as follows:

Theorem 2.2.3. Let a : Ω → R be a weight function satisfying properties (i)–(iii) in Defini-
tion 2.2.2 and

d ln a
(
ξ vi
|vi|

)
dξ

≤ d ln ξηi,a

dξ
, ∀ ξ ∈ [ℓ∗i , ℓi], ∀ i = 1, . . . , N.
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Let Ta be a value defined as

Ta =

4
N∑
i=1

max
{
1,

(ℓ∗i )
2

a(Li)
, (ℓi)

2

min
x∈[Li,Mi]

a(x)

}
2−max {η1,a, . . . , ηN,a}

+

2max {η1,a, . . . , ηN,a}
N∑
i=1

Ci,a

2−max {η1,a, . . . , ηN,a}
,

Then, for any T > Ta and (y0, y1) ∈ L2(Ω, dµ)×W−1,2
a (Ω,dµ), there exists a control function

F = [f1, f2, . . . , fN ]t ∈ L2(0, T ;RN ) such that the corresponding solution of (2.3) (in the sense
of transposition) satisfies condition (y(T ), yt(T )) ≡ (0, 0), i.e. the system (2.3) is boundary
null controllable in time T > Ta.

2.3 Controllability of Linear Advection-Diffusion Equations on
Networks and Vanishing Viscosity Limit

In the preprint [11], the authors study a linear advection-diffusion equation on a tree-shaped
network:

ae∂ty
e
ε(t, x) + be∂xy

e
ε(t, x)− ε∂xxy

e
ε(t, x) = 0, t ∈ (0, T ), x ∈ e, ∀e ∈ E ,

yeε(t, v) = uvε(t), t ∈ (0, T ), v ∈ V∂ ,

ye1ε (t, v) = ye2ε (t, v), t ∈ (0, T ), v ∈ V0, ∀e1, e2 ∈ E(v),∑
e∈E(v) b

eyeε(t, v)n
e(v)− ε∂ne(v)y

e
ε(t, v) = 0, t ∈ (0, T ), v ∈ V0,

yeε(0, x) = ye0(x), x ∈ e, ∀e ∈ E ,

(2.4)

where ae, be, ε > 0, and T > 0 is a fixed time-horizon, and ∂ne(v)y
e
ε := ne(v)∂xy

e
ε(v).

The well-posedness of this model was studied by other members of the Action in [52]; the
coupling conditions ensure the conservation of mass, energy dissipation, and continuity at the
junctions. For completeness, some notation for discussing networks is detailed here:

• the network is represented by a finite, directed, and connected graph G = (V, E) with
vertices V = {v1, . . . , vn} and edges E = {e1, . . . , em} ⊂ V × V,

• E(v) = {e ∈ E : e = (v, ·) or e = (·, v)} is the set of edges incident to the vertex v ∈ V,

• V∂ = {v ∈ V : |E(v)| = 1} is the set of boundary vertices (here |S| denotes the cardinality
of a set S),

• V0 = V\V∂ = {v ∈ V : |E(v)| ≥ 2} is the set of internal vertices,

• for every edge e =
(
vin, vout), the numbers ne

(
vin) := −1 and ne

(
vout) := 1 are used

to indicate the start and end point of the edge; ne(v) := 0 for v ∈ V \
{
vin, vout},

• for every vertex v ∈ V, the set E(v) is split into E in(v) := {e ∈ E : ne(v) > 0} and
Eout (v) := {e ∈ E : ne(v) < 0}, which are the sets of edges pointing into and out of the
vertex v, respectively,

• V∂ is split into a set of boundary vertices, V in
∂ := {v ∈ V∂ : ne(v) < 0 for e ∈ E(v)}, from

which edges leave into the network, and its complement Vout
∂ := {v ∈ V∂ : ne(v) > 0

for e ∈ E(v)}.
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The authors of [11] aim to steer the solution of (2.4) to zero by using controls localized in
the boundary vertices and to study the asymptotic behavior of the “cost of null-controllability”
as the viscosity parameter vanishes. While this type of controllability result on networks was
previously well-understood (modifying arguments in [76]), the work focuses on keeping track of
the cost of null-controllability as the diffusivity ε approaches zero, which is already challenging
on a segment [34]. Indeed, no results were previously available on uniform controllability in
the context of singular limits on networks, despite the problem’s long history on Euclidean
domains (going back to, e.g., [34]).

The first observation is that the solution of (2.4) converges to that of the hyperbolic
problem

ae∂ty
e(t, x) + be∂xy

e(t, x) = 0, t ∈ (0, T ), x ∈ e, ∀e ∈ E ,
ye(t, v) = uv(t), t ∈ (0, T ), v ∈ V in

∂ ,

ye1(t, v) = ye2(t, v), t ∈ (0, T ), v ∈ V0, ∀e1, e2 ∈ Eout(v),∑
e∈E in(v) b

eye(t, v) = ye1(t, v)
∑

e∈Eout(v) b
e, t ∈ (0, T ), v ∈ V0, e1 ∈ Eout(v),

ye(0, x) = ye0(x), x ∈ e, ∀e ∈ E ,

(2.5)

as ε → 0+. Additionally, as a consequence of the method of characteristics, the system (2.5)
is null-controllable for sufficiently large times and not controllable for small times. Thus, the
natural conjecture is that, for small times, the cost of null-controllability of (2.4) explodes as
ε→ 0+; whereas, for T sufficiently large, it decays to zero as ε→ 0+. To prove (a quantitative
version of) these claims, several technical innovations are needed.

The core strategy is based on the classical Hilbert Uniqueness Method (H.U.M., see [97]).
In this context, to prove the blow-up, the key tools are an Agmon-type inequality and the
construction of a suitable datum for the adjoint system; to prove the decay, there are two ingre-
dients: using a decay property for the L2-mass of the adjoint system and then a Carleman-type
inequality (keeping track of the viscosity parameter). The proof of the Carleman inequality
is particularly challenging and of interest due to the presence of boundary terms at the junc-
tions: in particular, an important technical innovation is the introduction of new suitable
weights of Fursikov–Imanuvilov type (see [59]) using a piecewise-C2 auxiliary function.

Controllability of conservation laws on networks

In [37], the authors study the controllability of a nonlinear conservation law on a star-shaped
graph:

∂tui + ∂xfi (ui) = 0, t > 0, x ∈ (−Li, 0),

∂tuj + ∂xfj (uj) = 0, t > 0, x ∈ (0, Lj),

ui(0, x) = u0,i(x), x ∈ (−Li, 0),

uj(0, x) = u0,j(x), x ∈ (0, Lj),

ui(t,−Li) = ub,i(t), t > 0,∑n
i=1 fi(ui(t, 0−)) =

∑n+m
j=n+1 fj(uj(t, 0+)), t > 0,

(2.6)

where Li, Lj > 0, i ∈ {1, . . . , n}, j ∈ {n+1, . . . , n+m}, and the flux functions satisfy suitable
assumptions (including a monotonicity condition f ′ℓ ≥ 0, for ℓ ∈ {1, . . . , n + m}). For this
problem, a notion of entropy-admissible solution has already been developed (see [5, 57, 109]).

The main result of [37] generalizes an approach used by Donadello and Perrollaz in [42].
By relying on an L1-based Lyapunov functional, it is possible to deduce a controllability-to-
trajectories result for such entropy solutions (acting on the exterior boundary nodes) requiring
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only geometric monotonicity-type conditions, rather than convexity/concavity assumptions on
the flux, as is more classical in the literature.

Furthermore, the robustness of this result with respect to viscous perturbations is dis-
cussed.

Zero diffusion-dispersion limit for the Benjamin–Bona–Mahony–Burgers
equation at a junction

In the work in progress [24], the authors consider the following generalized Benjamin–Bona–
Mahony–Burgers equation, which contains diffusive and dispersive effects, on a star-shaped
graph:

∂tρi,ε,δ + ∂xf(ρi,ε,δ) = ε∂xxρi,ε,δ + δ∂txxρi,ε,δ, t > 0, x < 0,

∂tρj,ε,δ + ∂xf(ρj,ε,δ) = ε∂2xxρj,ε,δ + δ∂txxρj,ε,δ, t > 0, x > 0,

ρi,ε,δ(t, 0) = ρj,ε,δ(t, 0), t > 0,
n∑

i=1
(f(ρi,ε,δ(t, 0))− ε∂xρi,ε,δ(t, 0)− δ∂txρi,ε,δ(t, 0))

=
n+m∑
j=n+1

(f(ρj,ε,δ(t, 0))− ε∂xρj,ε,δ(t, 0)− δ∂txρj,ε,δ(t, 0)) , t > 0,

ρi,ε,δ(0, x) = ρi,ε,δ,0(x), x < 0,

ρj,ε,δ(0, x) = ρj,ε,δ,0(x), x > 0,

(2.7)

where ε, δ > 0, i ∈ {1, ..., n}, j ∈ {n + 1, ..., n + m}, and f is a genuinely nonlinear flux
function. The transmission conditions at the junction x = 0 in (2.7) give the continuity of
traces of the solution and mass-conservation.

The well-posedness of (2.7) (under suitable assumptions on the flux function and initial
data) was studied in [106].

The authors are interested in investigating the zero diffusion-dispersion limit: they prove
that, as the diffusion and dispersion parameters ε, δ > 0 go to zero (under suitable balance
conditions), the solution of (2.7) converges to the entropy-admissible solution of the corre-
sponding conservation law (in the sense of [5]).

While the vanishing viscosity limit has previously been extensively studied (see, e.g., [5,
30]), the zero diffusion-dispersion singular limit problem presents several technical challenges
due to the dispersive effects (namely, lack of uniform L∞-estimates). The key tool in the
proof is the Lp compensated compactness framework introduced by Schonbek in [122]. This
is the first work on diffusive-dispersive singular limits on networks.
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Chapter 3

Numerically Efficient H∞ Analysis of
Output Synchronization of Networked
Dynamical Systems

Concepts like stability, performance, and robustness, which play a vital role in the analysis
of networked dynamical systems (NDS), crucially depend on the network topology and sub-
systems (agents) dynamics, see, e.g., [118]. Hence, analysis of different topology structures
and their influence on the robustness of the system is an important topic in the current
research of NDS. In the NDS design, one may want to remove or add communication/sensing
links in order to obtain favorable cooperative behaviors. Related analyses were carried out
for other systems which have connections to NDS, such as vibrational systems [112, 130],
as well as in other disciplines, such as social networks, health care systems and smart grids
[113, 114, 126, 143].

This chapter discusses a numerically efficient approach for computing the maximal/minimal
impact a subset of agents has on the whole networked dynamical system. For instance, if one
is able to disturb/bolster several agents and wishes to maximally disturb/bolster the entire
system, which agents should be chosen, and what kind of inputs should be applied? One
way to quantify the impact of the chosen subset of agents to the system is to calculate the
H∞ norm of the mapping “exogenous disturbance of the chosen agents” 7→ “output of the
system”. For simplicity, the following discussion considers linear second-order agent dynamics
and weighted undirected topologies where all agents share the same dynamical properties (i.e.,
homogeneous systems).

Works relating the H∞ norm and NDS typically focus on syntheses [128, 138]. For example,
the authors in [128] provide sufficient and necessary conditions for decentralized H∞ and
H2 control design over directed graphs employing the algebraic Riccati equation or direct
eigenstructure assignment. The analysis of NDS with respect to the performance of its agents
is an area which seems to be under-researched. For instance, the analysis of networked
dynamical systems in the general setting is missing. In particular, the efficient H∞ norm
calculation could be considered from the reduced order model perspective in the general system
parameters. Moreover, the analysis of the H2 norm in this context should be established and
compared with the corresponding results obtained with the H∞ norm.

Problem statement

Let F be a function in the space

H∞ =
{
F : C+ → Cm×ℓ

∣∣ F analytic s.t. sup
λ∈C+

σ(F (λ)) <∞
}
,

25



where C+ = {λ ∈ C | ℜ(λ) > 0} and σ(·) is the largest singular value of a matrix. Then the
H∞ norm of F is defined to be [145, Chap. 3]

∥F∥∞ = sup
λ∈C+

σ(F (λ)) = sup
ω∈R

σ(F (iω)).

Let G = (V, E , {wjk}nj,k=1) be an undirected weighted graph, with V = {v1, . . . , vn}, E ⊂
V × V and where wjk ≥ 0 are edge weights such that wjk = wkj for all j, k and wjk > 0
if and only if (j, k) ∈ E . Let Ei denote the set of vertices adjacent to the vertex i, i.e.
Ei = {j ∈ V : (i, j) ∈ E}. For

Consider n linear agents, indexed by V and given by

χ̈i = −Tsχ̇i +Ksυi + ηiωi, Ts,Ks > 0, (3.1)

where χi ∈ R is the state, υi ∈ R is the input, ωi ∈ R is the exogenous disturbance of the ith

agent, i ∈ {1, . . . , n}, and ηi ∈ R is the corresponding disturbance weight.
A widely utilized decentralized output-feedback protocol to achieve network synchroniza-

tion [118] is

υi = −KĈ
∑
j∈Ei

wij

([
χi

χ̇i

]
−
[
χj

χ̇j

])
, (3.2)

where K > 0 and Ĉ = [c1 c2] with c1, c2 > 0.
A standing assumption herein is that the underlying graph G is connected.
In order to generalise to scenarios in which the disturbances ωi are not necessarily all

independent, assume that among the exogenous disturbances {ω1, . . . , ωn} there are k ∈
{1, . . . , n} different ones {ωi1 , . . . , ωik} (e.g., the same ocean waves or wind gusts concurrently
disturb several agents). Then

[
ω1 . . . ωn

]⊤
= H

[
ωi1 . . . ωik

]⊤, where the matrix H ∈
Rn×k is given by

Hjℓ =

{
1, ωj = ωiℓ

0, otherwise
, j = 1, . . . , n, ℓ = 1, . . . , k.

Let E = diag(η1, . . . , ηn)H ∈ Rn×k denote the corresponding disturbance matrix. Assume
that ηi ̸= 0 if Hii ̸= 0, i.e., if the ith agent is disturbed, then the corresponding weight is not
zero. This in particular implies that E is a full rank matrix.

Let L be the Laplacian of the graph G (see, e.g. [13, Section 4.2]). Then the closed-loop
dynamics can be written as

χ̈+
(
Ts︸︷︷︸
:=β

IN + LKsKc2︸ ︷︷ ︸
:=α

)
χ̇+ LKsKc1︸ ︷︷ ︸

:=γ

χ = Eω, (3.3)

where χ := (χ1, . . . , χn) and ω := (ωi1 , . . . , ωik).
The protocol (3.2) seeks for agreement/consensus, regardless of where that agreement

is obtained. In particular, the system is invariant to translations, owing to the fact that
[1, 1, . . . , 1]⊤ is an eigenvector of L with respect to zero eigenvalue. Hence, the system can be
reduced to obtain the single point equilibrium 0. Performing the reduction outlined in [111]
yields the following system{

ẋ = Ax+Bω

y = Cx,
(3.4)
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where

A =

[
0(n−1)×(n−1) V ⊤

−γLV −βIn − αL

]
,

B =

[
0(n−1)×k

E

]
, C =

[
V 0n×n

]
.

The columns of matrix V ∈ Rn×(n−1) span the subspace {1}⊥, where 1 = [1 . . . 1]⊤ and V
satisfies V ⊤V = I.

One can obtain the following expressions for the transfer function F (s) = C(is − A)−1B
of the system (3.4):

F (0) =
1

γ
L+E, (3.5)

where L+ denotes the Moore–Penrose pseudoinverse of L, and for s ̸= 0:

F (s) =
1

γ + isα
V V T (L− µ(s)In)

−1E, (3.6)

where

µ(s) =
s2 − isβ

γ + isα
.

Main results

While it is well known that the H∞ property in the following theorem holds for positive
systems [116], in [110] the authors extend this to systems which are not necessarily positive
as outlined in the following theorem and corollary.

Theorem 3.1.1. Suppose that γ ≤ αβ or that γ > αβ and ∥L∥ ≤ β2

2(γ−αβ) . Then

∥F∥∞ = σ(F (0)).

Corollary 3.1.2. Suppose that γ ≤ αβ or that γ > αβ and ∥L∥ ≤ β2

2(γ−αβ) . Then among all
disturbance matrices E ∈ Rn×k with σ(E) ≤ 1, the maximum

max
E : E∈Rn×k

1≤k≤n, σ(E)≤1

σ(L+E)

is attained at Rn×1 ∋ E = v2, where v2 is the (normalized) eigenvector of L corresponding to
λ2, so-called the Fiedler vector.

Theorem 3.1.1 implies that maximal response of the system is obtained for constant dis-
turbances. Also, among all E’s from Corollary 3.1.2, it is enough to excite each agent with a
constant disturbance and weights ηi’s given by the Fiedler vector.

When analyzing a NDS, the H∞ norm needs to be calculated many times. For example,
“ranking” the agents by sensitivity to exogenous disturbances requires calculating the H∞
norm for each agent. Using Theorem 3.1.1, this can be achieved efficiently on a standard
computer even for very large NDSs, up to hundreds of thousands of agents.
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Chapter 4

Applications Related to Gas Transport

4.1 Gas Market Modelling

The European gas market is governed by rules that are agreed on by the European Union. In
[72], the authors present a mathematical market model that takes into account this structure,
where the technical system operator (TSO) offers certain transportation capacities that can
be booked and later nominated within the previously chosen bookings by the traders. The
TSO also fixes booking fees and defines an operational control of the gas pipeline system in
order to deliver the gas according to the nominations. Since the gas flow is governed by a
system of partial differential equations (PDEs), such equations are also involved in the model
in order to realize this control structure.

While four-level gas market models have been discussed previously, e.g. in [121], [72] takes
into account the (transient) physics of gas flow by describing it not by a stationary model
but by the semilinear isothermal Euler equations, see [41]. This influences the structure of
the overall model and its reduction to a single level problem, alongside the corresponding
necessary optimality conditions. A specific challenge that arises in the coupling investigated
in [72] is that the PDE model and associated objectives are continuous in time whereas the
market model and its objectives are discrete in time. The authors of [72] present methods
that allow for coupling objectives of the two different types.

It was shown in [121] that, under suitable assumptions, the specific structure of the op-
timization problems and their coupling in the presented model allow for the reduction of
the four-level model to an aggregated bilevel problem. In the upper level, of the resultant
bilevel model, the TSO optimizes social welfare and the efficient allocation of the gas while
the traders determine their bookings and nominations in an optimization problem on the
lower-level. This complexity-reduction of the market model is done in terms of the associated
stationarity or Karush-Kuhn-Tucker (KKT) conditions.

The authors of [72] propose a different method for reducing the complexity of the levels
two and three. They show that the Nash games of the market participants can be phrased
as potential generalized Nash equilibrium problems of the particular structure investigated
in [56]. The inherent structure of the players’ objectives and constraints in such games al-
lows them to be replaced by a single optimization problem by choosing the correct potential
function and feasible sets.

A specific feature of the model considered in [72] is that there is no direct influence of the
PDE dynamics on the decisions of the traders concerning their nominations and bookings. The
solution of the PDE dynamics only influences the booking fees and the technical capacities,
both of which are exogenous parameters from the perspective of the traders. Therefore the
coupling between the PDE model and the finite Nash games is realized through booking fees
and technical capacities only.

The authors of [72] also provide examples for the optimal control problem of the TSO.
For example, one task of the TSO is to determine the set of possible bookings that can be
transported through the network.
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4.2 Data Assimilation for Gas Networks via Distributed and
Nodal Observers

Many algorithms for solving control problems (of gas flow in pipe networks) rely on knowledge
(or at least a high fidelity approximation) of the system state. However, it is not possible to
measure the complete state at all points in the network. One solution to this problem is the
use of data assimilation techniques, i.e. combining partial measurements with a suitable PDE
model for gas transport, in order to estimate the system state.

The work [63] studies observer-based data assimilation for gas transport using distributed
measurements of one state variable. The gas flow is described by the barotropic Euler equa-
tions (1.13). For this system an observer system is constructed into which the measurements
are inserted through a source term of Luenberger-type, cf. [102]. This is similar to the
Luenberger-observer for the shallow water equations investigated in [18], which however re-
quires the kinetic description of the PDEs to define the observer. The analysis in [63] avoids
this requirement, simplifying the definition and analysis of discretized versions of the observer.

For velocity measurements, the observer system investigated in [63] is given by
∂tρ̂+ ∂xm̂ = 0, x ∈ [0, ℓ], t > 0

∂tm̂+ ∂x

(m̂2

ρ̂
+ p(ρ̂)

)
= −γ

ρ̂
|m̂|m̂+ µρ̂(v − v̂), x ∈ [0, ℓ], t > 0

(4.1)

with “nudging parameter” µ > 0. Here, quantities without ·̂ refer to the state of the original
system whereas quantities with ·̂ denote the state of the observer. In the first part of [63], the
existence of solutions to the system (4.1) is shown for initial and boundary data that satisfy
suitable smallness and compatibility conditions. This existence result extends the result from
[73] to more general coupling and boundary conditions and to the observer system. The main
idea of the proof is to first transform the system into the form incorporating the Riemann
invariants, then rewrite this as a system of integral equations along the characteristic curves,
and lastly to make use of a fixed-point argument. The second part of [63] discusses the relation
between observer and system states, showing that the observer converges exponentially to the
system state for long times, if the velocity in both systems and the time derivative of the exact
solution are sufficiently small. This is done by estimating the difference between the state of
the observer system and the original system state in terms of relative energy, in a manner
similar to [49, 50]. The relative energy is extended via the addition of a suitable functional in
order to control the error with respect to the unmeasured variable. This idea is based on an
extension of the energy that was used in [51], see also [146]. The convergence is first proved
for a single pipe before being extended to star-shaped networks.

In contrast, [70] considers an observer system that is based on nodal measurements. Syn-
chronization of observers is related to control problems for the difference system, see [74] and
references therein for an overview on boundary control of one-dimensional hyperbolic sys-
tems. In [70], which is inspired by the prior work [68] on boundary stabilization of gas flow
on star-shaped networks, the authors consider gas flow on general networks, modeling the
gas flow by a semilinear model that is obtained by transforming the Euler equations (1.13)
to the form incorporating Riemann invariants and then linearizing the advective part of the
system. Measurements of the exact state are inserted into the observer system as boundary
or nodal conditions. If both systems have sufficiently smooth and bounded solutions and if
for each pipe there is at least one adjacent node where measurements are available, then the
exponential convergence of the observer state towards the original system state is shown via
an observability inequality. Extending this work to a setting where measurements are only
available at boundary nodes is an objective of current research.
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In [69], the nodal observer system and its analysis is extended to a quasilinear 3×3 system
that allows for hydrogen blending into natural gas. In addition, the effect of measurement
errors is investigated. Provided measurements are available at all nodes of the network and
certain smallness conditions are satisfied, the observer state is shown to converge to the system
state, up to a difference of the size of the measurement errors [69].

4.3 Feedback Stabilization for the p-System at a Junction

In the work in progress [29], the authors consider N ∈ N \ {0} rectilinear tubes, each one
modeled by the real interval I = (0, 1), exiting a junction, which is located at the position x =
0. For ℓ ∈ {1, . . . , N}, the direction and section of the ℓ-th tube are described, respectively,
by the direction and the norm of a vector νℓ ∈ R3\{0}. All tubes are filled with the same
compressible, inviscid and isentropic (or isothermal) fluid, and friction along the walls is
neglected. Hence, the fluid dynamics can be modeled through N copies of the one-dimensional
p-system in Eulerian coordinates:

∂tρℓ + ∂xqℓ = 0, t > 0, x ∈ [0, 1),

∂tqℓ + ∂x

(
q2ℓ
ρℓ

+ p (ρℓ)
)
= 0, t > 0, x ∈ [0, 1),

(ρℓ, qℓ) (0, x) = (ρ0,ℓ, q0,ℓ) , x ∈ (0, 1),

ℓ ∈ {1, . . . , N}. (4.2)

Here, t is time, and, along the ℓ-th tube, x is the abscissa, ρℓ is the fluid density, and qℓ is
its linear momentum density. The pressure law p = p(ρ) is the same for all tubes; it plays
the role of the equation of state of the fluid under consideration and is assumed to satisfy the
following hypothesis:

p ∈ C2(R+,R+), p′ > 0, p′′ > 0.

The authors consider the concept of P -solutions (see [31, 32]): namely, weak solutions of (4.2)
such that

1. mass is conserved at the junction;

2. the trace of the flow of the linear momentum (also called dynamic pressure), i.e.

P (ρℓ, qℓ) =
q2ℓ
ρℓ

+ p(ρℓ),

at the junction is the same for all tubes;

3. entropy may not decrease at the junction.

The analysis extends the ideas of [33] which restricted its consideration to considering
systems with two strictly positive eigenvalues. Generalising to broader classes of systems
introduces several technical difficulties in the context of this problem.
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Chapter 5

Further Applications

5.1 Analysis, Numerics, and Parametrization of Cross-Diffusion
with Reaction Models

Following the pioneering work of Keller and Segel in the 1970s [83], cross-diffusion models
have attracted significant interest in biology, chemistry, and physics for simulating systems
with multiple species (see e.g. [60]).

Reaction-cross-diffusion models have been investigated from various perspectives and linked
to numerous applications. Although cross-diffusion is a widespread phenomenon in complex
networks and plays an important role in modelling complex natural phenomena, it is fre-
quently overlooked in the analysis of reaction-diffusion networks. Key ingredients developed
for the study of cross-diffusion PDEs and for networks of dynamical systems can be extended
and combined in order to study cross-diffusion on complex networks (see e.g. [90]).

The application of cross-diffusion to image problems is not as frequent as its application
to population dynamics or chemotaxis. The particular case of complex diffusion has been
considered in the literature [14, 64]. In particular, nonlinear complex diffusion has been
shown to be a numerically well-conditioned technique with successful applications to image
restoration (see e.g. [12, 14]).

Alongside developments in modeling, the associated theory has evolved in synergy with
practical applications, leading to increased interest in this area in recent years. Despite the
widespread use of cross-diffusion models across numerous fields and the substantial mathe-
matical developments surrounding them, several challenging problems and crucial questions
remain to be addressed.

Mathematical model

Cross-diffusion models are described by time-dependent PDEs of diffusion/reaction-diffusion
type, where the diffusive component incorporates a nonlinear non-diagonal diffusion matrix.
This formulation results in a strongly coupled system where the evolution of each dependent
variable depends both on its own dynamics and on the others, as dictated by the diffusion
matrix and the reaction terms.

In this context, the evolution of the function u = (u1(x, t), . . . , un(x, t))
⊺ describing

(concentrations of) n species (chemical, biological, or otherwise) at position x ∈ Ω ⊂ Rm,
m ∈ {1, 2, 3} and time t > 0 is governed by the initial-boundary-value problem

∂ui
∂t

= ∇ ·

 n∑
j=1

Dij(u)∇uj

+ fi(u), i = 1, . . . , n, x ∈ Ω, t > 0, n∑
j=1

Dij(u)∇uj

 · ν = 0, i = 1, . . . , n, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x), x ∈ Ω, t = 0.

(5.1)

33



Here Dij(u) is the nonlinear diffusion coefficient relating the jth species gradient with the
flux of the ith species.

The mathematical properties and well-posedness of the corresponding initial-boundary
value problems for these systems depend strongly on the associated diffusion matrix. When
this matrix is symmetric and uniformly positive definite, well-posedness results (including a
maximum principle) hold by standard arguments [3, 4]. When the matrix is only uniformly
positive definite, existence and uniqueness of weak solutions can be obtained ([7, 60]) via the
Schauder fixed point theorem ([19]).

The stability properties of explicit, implicit and semiimplicit finite difference schemes for a
general nonlinear complex reaction-diffusion equation are derived in [9], and the corresponding
convergence properties discussed in [8]. The stability results are generalized to cross-diffusion
with reaction equations in [12].

It is known that implicit schemes have better stability properties when compared to their
explicit counterparts, enabling the use of larger time steps and a broader range of diffusion
coefficients. However, those advantages come at the price of high computational cost. The
work [100] discusses operator splitting schemes as one route to lowering the computational
load.

Learning stable numerical models

In [12] the authors aim to discover an optimal cross-diffusion reaction system for image denois-
ing. To this end the optimal coefficients and influence functions which define the cross-diffusion
matrix are determined. This is achieved by turning the PDE into a learnable architecture.
Then, a back-propagation technique is used in order to minimize a cost function related to
the quality of the denoising process, while ensuring stability of the underlying numerical
method during the learning procedure. The benefits of including the stability conditions in
the learning algorithm are evident from the simulations. The methodology used in [12] for the
model parametrization, which is based on solving a constrained optimization problem using
back-propagation, can be transferred to a broad range of PDE models aiming at different
applications.

5.2 Mathematical Modeling and Optimization of Stents

A stent is a small, usually metallic, mesh that is placed in a narrowed or closed part of
a blood vessel to keep the vessel open to restore normal blood flow. A variety of stents
exist on the market with differing structures, sizes, geometries, and mechanical properties.
Designing stents to meet prescribed mechanical constraints is a very demanding task. Despite
the widespread use of vascular stents, the optimal design of their geometric and mechanical
properties lacks a rigorous mathematical approach. The main reason for this is the fact
that stents are three-dimensional solids and so are usually computationally modeled using 3D
approaches, see [45, 58, 93, 105, 119] and the references therein. Designing an optimization
algorithm based on 3D stent simulations is exceedingly complicated, and often times leads
to an algorithm that is computationally very expensive and requires a large memory. The
authors of [66], [67] propose a novel one-dimensional mathematical model for a stent based on
the one-dimensional curved rod model from [81]. This essentially treats the stent as a graph
N = (V, E), i.e. a union of stent struts, with additional mechanical properties.

Thus, the (mixed) weak formulation of the entire stent is obtained by adding up the
(mixed) weak formulations of each stent strut/edge. This is done for the functions uS ∈ Vs
denoting the collection of displacement vectors of middle lines and infinitesimal rotations of
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cross–sections of all struts and pS := (p1, . . . ,pnE , α, β) ∈ QS , where

VS = H1(N ;R6), QS = L2(N ;R3)× R3 × R3 =

nE∏
i=1

L2(0, ℓi;R3)× R3 × R3. (5.2)

These functions are defined on the entire stent, and the state variables uS are continuous
at vertices (globally continuous and thus belong to H1). The functions pS play the role of
Lagrange multipliers, enforcing the inextensibility and unshearability condition, and zero total
translation and rotation (see below).

After multiplying the differential equations of each stent strut (edge in the graph) by the
components of the test functions ũS , and integrating them by parts, and after taking the
equilibrium of contact forces and contact moments at vertices/junctions of the graph into
account, the resulting mixed weak formulation can be written in terms of the bilinear forms
kS : VS × VS → R and bS : QS × VS → R, where:
kS(uS , ũS) =

nE∑
i=1

∫ ℓi

0
QiHi(Qi)T∂sω

i · ∂sω̃ids,

bS(pS , ũS) =

nE∑
i=1

∫ ℓi

0
pi · (∂sũi + ti × ω̃i)ds+ α ·

nE∑
i=1

∫ ℓi

0
ũids+ β ·

nE∑
i=1

∫ ℓi

0
ω̃ids.

(5.3)

Here nE is the number of edges in the graph, ℓi is the length of the ith edge, Qi denotes
the local frame associated to the ith edge, Hi is a matrix that carries the information about
properties of the material the stent is made of and the properties of the cross–sections of the
stent struts. To deal with the forces, the following linear functional is introduced:

lS : VS → R, lS(ũS) =

nE∑
i=1

∫ ℓi

0
f i · ũids. (5.4)

The mixed formulation of the state problem can then be stated as:

Find (uS ,pS) ∈ VS ×QS such that{
kS(uS , ũS) + bS(pS , ũS) = lS(ũS), ∀ũS ∈ VS ,

bS(p̃S ,uS) = 0, ∀p̃S ∈ QS .
(5.5)

This model is in the mixed formulation, hence suitable for the finite element method (FEM). It
is derived in detail in [66], where the existence of a unique solution is proven. The convergence
of the FEM for it is proven in [67].

Numerically solving the model enables very efficient simulations that can lead to insights
about the global properties of the stent without producing it, leading to questions of opti-
mality. Optimization of the stent’s strut thicknesses is done in [131], while the optimization
of the geometry of struts is carried out in [132]. In both of these optimization problems the
most typical cost function is the stent’s overall compliance. To find a stent with minimal
compliance, one seeks to minimize the elastic energy of the stent kS(uS ,uS) in such a way
that the resulting displacement, for a given outside forcing, satisfies the stent problem (5.5).
Since the elastic energy for a given forcing must be equal

∫
N f ·uSds, inserting ũS = uS in the

first equation in (5.5), leads to the following cost function J : VS ×QS → R for the problem
of optimizing the overall stent’s compliance:

J(uS ,pS) =

∫
N
f · uSds =

nE∑
i=1

∫ ℓi

0
f i · uids, (5.6)
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where (uS ,pS) is the solution of (5.5). Let h denote the finite set of parameters of optimiza-
tion. In the stent’s strut thicknesses optimization this is a vector with nE thicknesses and
in the geometry optimization with nV scalars representing longitudinal position of the stent
vertices. For a given value h, let (uS(h),pS(h)) denote the solution of (5.5). The optimal
stent design problem now reads as follows:

Find h∗ such that{
J(uS(h

∗),pS(h
∗)) = min

h∈W
J(uS(h),pS(h)),

where (uS(h),pS(h)) is the unique solution of (5.5),
(5.7)

where J(uS(h),pS(h)) is given by (5.6).
The setW contains constraints, such as, e.g., the minimal and maximal value of parameters

and a constraint on the total volume V0 of the material the stent is made of for the thickness
optimization problem.

Unlike the current data based approaches to optimization of 3D elastic structures [127,
129], in both cases it can be rigorously proven that the constrained optimization algorithm has
a solution, and one can construct approximate solutions using the extremely efficient gradient
descent method.
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