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1. Introduction

One of the main focuses of Working Group 2 consists in studying nonlinear phenomena
for kinetic-like models. This white paper presents a comprehensive study of modelling
of polyatomic gases and mixtures in the collisional kinetic gas theory. The topic was
extensively discussed during WG2 meetings and some talks presented the latest advance-
ment in the field. More precisely, three speakers (Andrea Bondesan, Vladimir Djordjić,
Damir Madjarević) at the first WG2 meeting organized at Ceptor Andrevlje, Fruška
Gora, Serbia, in 2021, presented their work on multi-species and polyatomic Boltzmann
equation. The second WG2 meeting, held at the Sorbonne Université campus of Saint-
Cyr-l’École, France, in 2022, was primarily devoted to the compactness properties of the
linearized polyatomic Boltzmann operators (talks by Niclas Bernhoff, Thomas Borsoni,
Marwa Shahine) and related issues (Romina Travaglini, Julien Mathiaud).

In this manuscript, we unify ideas and notations for modelling of polyatomic gases in
different settings: (i) resonant collisions, (ii) continuous internal energy with Borgnakke-
Larsen procedure, (iii) discrete internal energy. Moreover, we complement the presenta-
tion by extending the concepts to gas mixtures composed of monatomic and polyatomic
gases, both in continuous and discrete approaches for the internal energy. With this unified
notation, we write the Boltzmann equation and the corresponding linearized Boltzmann
operator. Then, we briefly present recent results on its compactness property.

This analysis is the basis for a more complete review of compactness results for the
linearized Boltzmann operator for polyatomic gases, which will be presented in the form
of a review article to be submitted to the Proceedings of the Final MAT-DYN-NET
Conference.

2. Polyatomic gas modelling

In this section, we describe various models of polyatomic gases existing in the literature.
In some cases, we also explain the extension to multispecies gaseous mixtures.

Let us first briefly recall the description of a single monatomic gas. Consider two
monatomic molecules of mass m undergoing an elastic collision process. Denote their pre-
collisional velocities v, v∗, which become v′, v′∗ after collision. The microscopic momentum
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and energy are conserved through the process, expressed as follows

mv +mv∗ = mv′ +mv′∗,(1)

1

2
m|v|2 + 1

2
m|v∗|2 =

1

2
m|v′|2 + 1

2
m|v′∗|2.(2)

Introducing a parameter σ ∈ S2, one obtains the collision rules, giving the expression of
the post-collisional velocities

(3) v′ =
1

2
(v + v∗) +

1

2
|v − v∗|σ, v′∗ =

1

2
(v + v∗)−

1

2
|v − v∗|σ,

in terms of pre-collisional ones. For (much) more details on the monatomic case, the
reader may refer, for instance, to [27].

At the macroscopic level, the main distinction between monatomic and polyatomic
gases can be observed when the specific internal energy of the gas is considered. Let
us denote by ê its dimensionless form. Namely, for a monatomic gas, it is known that
the dimensionless specific heat at constant volume is ĉv = 3/2 and consequently dê

dT
=

3/2. However, for thermally perfect (non-polytropic) gases, the specific heat ĉv is a
temperature-dependent quantity and, in general, it is only known through its definition
ĉv(T ) = dê

dT
. Even if ĉv(T ) is assumed to be constant with respect to the temperature,

which corresponds to calorically perfect or polytropic gases, it is experimentally observed
that, at room temperature, ĉv > 3/2 [23, 24]. Hence, such a behavior of polyatomic gases
is a consequence of more complex collisions than the ones for monatomic gases, and in
particular, (2) has to be reconsidered.

Two approaches to model polyatomic gases have been developed in parallel. They share
the same idea: associate an internal energy to a polyatomic molecule and consequently
rewrite (2). The main difference lies in the form of the internal energy they use, either a
continuous or discrete one.
The continuous approach introduces a continuous internal energy I ≥ 0 as an additional

argument of the distribution function, and a nonnegative function φ of I which becomes
a parameter of the model to capture a proper form of the specific internal energy ê. First,
[13] proposed a power-law form of φ, that is, for any I ≥ 0,

(4) φ(I) = Iδ/2−1,

where δ > 0 is related to the number of internal degrees of freedom of the molecules. More
specifically, for polytropic gases, δ is constant and δ = 2ĉv−3 [19]. The model is accurate
for diatomic gases (for instance N2, O2, NO, CO, H2) for temperatures close to the room
temperature. Later, [18] presented the model without prescribing a specific form of φ.
This general form is supposed to allow for a more general macroscopic internal-energy law
and eventually capture non-polytropic gases.

With the discrete approach [17, 20, 22], the internal energy can only take a finite
number of given values

{
I(1), ..., I(Nint)

}
. Then the parameters (φ(1), ..., φ(Nint)) account

for the degeneracy of the different energy levels [20]. The degeneracy φ(k) ∈ R+ of the
internal energy I(k) corresponds to the number of different states that give rise to the
same specific internal energy I(k).

2.1. Borgnakke-Larsen procedure. Originally presented in [7], this model was the
first one studied in the literature when dealing with a continuous internal energy variable
in a kinetic setting. It can be found, written in various forms, for instance in [13, 18].
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Let us consider two colliding polyatomic molecules of mass m with respective velocities
and internal energies (v, I) and (v∗, I∗), changing to (v′, I ′) and (v′∗, I

′
∗). The microscopic

momentum and total energy are conserved as follows

mv +mv∗ = mv′ +mv′∗,(5)

m

2
|v|2 + I +

m

2
|v∗|2 + I∗ =

m

2
|v′|2 + I ′ +

m

2
|v′∗|2 + I ′∗.(6)

In the center-of-mass reference frame, using the relative velocities V = v−v∗, V
′ = v′−v′∗,

the energy conservation can equivalently be rewritten as

(7)
m

4
|V |2 + I + I∗ =

m

4
|V ′|2 + I ′ + I ′∗ =: E,

which defines the total energy E in the center-of-mass frame. The Borgnakke-Larsen
procedure splits E into kinetic and internal energy contributions using a parameter R ∈
[0, 1] in the following way

(8) RE =
m

4
|V ′|2 , (1−R)E = I ′ + I ′∗,

and then associates those energies to the post-collisional velocities and internal energies
with the help of parameters σ ∈ S2 and r ∈ [0, 1],

v′ =
v + v∗

2
+

√
RE

m
σ, v′∗ =

v + v∗
2

−
√

RE

m
σ,(9)

I ′ = r(1−R)E, I ′∗ = (1− r)(1−R)E.(10)

The collision kernel B ≥ 0 is assumed to satisfy symmetry properties reflecting an inter-
change of colliding molecules, as well as microreversibility assumptions corresponding to
the pre/post-collision change, which means that

B(v, v∗, I, I∗, r, R, σ) = B(v∗, v, I∗, I, r, R, σ),

B(v, v∗, I, I∗, r, R, σ) = B

(
v′, v′∗, I

′, I ′∗, r
′, R′,

V

|V |

)
,

(11)

with

(12) R′ =
m|V |2

4E
, r′ =

I

I + I∗
=

I

(1−R′)E
.

The associated Boltzmann collision operator can then be defined, for any measurable
function f for which it makes sense and for almost every v and I, by

(13) Q(f, g)(v, I) =

∫
R3×R+×(0,1)2×S2

(
f ′ g′∗

φ(I)φ(I∗)

φ(I ′)φ(I ′∗)
− f g∗

)
× B̃(v, v∗, I, I∗, r, R, σ)

φ(I)φ(I∗)
(1−R)

√
R dv∗ dI∗ dR dr dσ,

with B̃ satisfying (11), and where we used the standard notations f ′ = f(v′, I ′), g′∗ =
g(v′∗, I

′
∗), f = f(v, I), g∗ = g(v∗, I∗), the prime quantities v′, v′∗, I

′ and I ′∗ being defined
by (9)–(10). Results that are of interest for this review use the specific form (4) of the
weight factor, namely φ(I) = Iδ/2−1, δ > 0. In this case, one can use another collision
kernel defined as

B(v, v∗, I, I∗, r, R, σ) =
B̃(v, v∗, I, I∗, r, R, σ)

(II∗)δ/2−1(r(1− r))δ/2−1(1−R)δ−2
=

B̃(v, v∗, I, I∗, r, R, σ)Eδ−2

φ(I)φ(I∗)φ(I ′)φ(I ′∗)
,
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which clearly still satisfies assumption (11). Then the collision operator reads, for almost
every (v, I) ∈ R3 × R+,

(14) Q(f, g)(v, I) =

∫
R3×R+×(0,1)2×S2

(
f ′ g′∗

(
I I∗
I ′ I ′∗

)δ/2−1

− f g∗

)

×B(v, v∗, I, I∗, r, R, σ) (r(1− r))δ/2−1 (1−R)δ−1
√
R dv∗ dI∗ dR dr dσ.

For convenience, we state a part of the H-theorem that defines the equilibrium state.

Proposition 1. The three following properties are equivalent:

(i) Q(M,M) = 0,

(ii)

∫
R3×R+

Q(M,M)(v, I) log(M(v, I)I1−δ/2) dv dI = 0,

(iii) there exist n ≥ 0, u ∈ R3 and T > 0 such that, for almost every (v, I) ∈ R3 ×R+,

(15) M(v, I) =
n

(kBT )δ/2Γ(δ/2)

(
m

2πkBT

)3/2

Iδ/2−1 exp

(
−m|v − u|2

2kBT
− I

kBT

)
,

where Γ represents the usual Gamma function.

2.2. Polyatomic gas with resonant collisions. A resonant behaviour can be observed,
for instance, in the collisions between selectively excited CO2 molecules [25]. In that case,
the microscopic internal and kinetic energies are separately conserved during the collisional
process.

Consider two resonant-colliding polyatomic molecules of mass m with velocities and
internal energies (v, I) and (v∗, I∗), which change into (v′, I ′) and (v′∗, I

′
∗) due to the

collision process. In the resonant kinetic model introduced in [11], we have the following
microscopic momentum and energy conservations

mv +mv∗ = mv′ +mv′∗,(16)

m

2
|v|2 + m

2
|v∗|2 =

m

2
|v′|2 + m

2
|v′∗|2,(17)

I + I∗ = I ′ + I ′∗.(18)

Due to the conservations (16)–(17), which are separate, we inherit the natural monatomic
parametrization (3) of the velocities. Then, in [11], the internal energies are parametrized
using the same idea as in the Borgnakke-Larsen model recalled in the previous subsection.
More precisely, the authors introduce a parameter allowing to distribute the conserved
internal energy between the prime internal energies of both molecules. In [9], however, this
parameter is not used, and (equivalently) replaced by a direct parametrization through
I ′ ∈ [0, I + I∗], where I ′∗ is then chosen as

(19) I ′∗ = I + I∗ − I ′.

Let us describe the model with this last parametrization. We consider a collision kernel
B ≥ 0 which is required to be symmetric, i.e.

(20) B(v, v∗, I, I∗, I
′, σ) = B(v∗, v, I∗, I, I

′
∗, σ),

and to satisfy a microreversibility property, that is

(21) B(v, v∗, I, I∗, I
′, σ) = B

(
v′, v′∗, I

′, I ′∗, I,
V

|V |

)
,
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where V = v− v∗ denotes again the relative velocity. The associated invariant measure is

B(v, v∗, I, I∗, I
′, σ)1[0,I+I∗](I

′)φ(I)φ(I∗)φ(I
′)φ(I + I∗ − I ′) dI ′ dI∗ dI dσ dv∗ dv,

where 1[0,I+I∗] is the characteristic function of [0, I + I∗]. Note that (21) is the microre-
versibility condition written in both [9] and [8], but the measure was inaccurately written
in [9] and corrected in [8].

Remark 1. A resonant collision kernel is related to a collision kernel similar to the ones
used in Subsection 2.1 in the following way. Consider a collision kernel function B̂ :=
B̂(v, v∗, I, I∗, r, R, σ) satisfying the symmetry/microreversiblity conditions (11). Following
[8], and keeping the notation E for the center-of-mass energy, obviously conserved during

the collision process, one can build a resonant collision kernel B from B̂ through

(22) B(v, v∗, I, I∗, I
′, σ) = B̂

(
v, v∗, I, I∗,

I ′

I + I∗
, 1− I + I∗

E
, σ

)
E 1[0,I+I∗](I

′).

Note that the characteristic function can be dropped (it is only added here for the sake of

clarity) since B̂ is zero when computed for values of parameters outside [0, 1].

This allows to define the Boltzmann collision operator Q associated to the resonant
model. For any measurable function f for which it makes sense, we can write, for almost
every (v, I) ∈ R3 × R+,

(23) Q(f, g)(v, I) =

∫
R3×(R+)2×S2

(
f ′g′∗

φ(I)φ(I∗)

φ(I ′)φ(I + I∗ − I ′)
− fg∗

)
×B(v, v∗, I, I∗, I

′, σ)1[0,I+I∗](I
′)
φ(I ′)φ(I + I∗ − I ′)

Ψres(I + I∗)
dv∗ dI∗ dI

′ dσ,

where we used again the standard notations f ′ = f(v′, I ′), g′∗ = g(v′∗, I
′
∗), f = f(v, I),

g∗ = g(v∗, I∗), with the prime quantities v′, v′∗ and I ′∗ defined by (3) and (19), and, for
any Z ≥ 0,

Ψres(Z) =

∫ Z

0

φ(I ′)φ(Z − I ′) dI ′.

The equilibria are characterized thanks to the following H-theorem proven in [9].

Proposition 2. The three following properties are equivalent:

(i) Q(M,M) = 0,

(ii)

∫
R3×R+

Q(M,M)(v, I) log

[
M(v, I)

φ(I)

]
dv dI = 0,

(iii) there exist n ≥ 0, u ∈ R3 and Tkin, Tint > 0 such that, for almost every v and I,

(24) M(v, I) =
n

q(Tint)

(
m

2πkBTkin

)3/2

φ(I) exp

(
−m|v − u|2

2kBTkin

− I

kBTint

)
,

where the internal energy partition function q is defined, for any T > 0, by

(25) q(T ) =

∫
R+

exp

(
− I

kBT

)
φ(I) dI.

Note that (24) is a product of two Gibbs distributions, which can also be named a
Maxwell distribution similarly to the monatomic case, with two different temperatures
Tkin and Tint.
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Remark 2. In [9], the authors provide a framework for φ of the following form: there
exist β1, β2 ≥ 0, and C, C ′ > 0 such that

CIβ1 ≤ φ(I) ≤ C ′Iβ1 , I ∈ (0, 1),

and that, for any a > 0, there exists Ca > 0 such that

CaI
β2−a ≤ φ(I) ≤ C ′Iβ2 , I ≥ 1.

For the sake of upcoming discussions, we rewrite the collision operator (23) and equi-
librium distributions (24) by explicitly using (4) for φ. First, one can compute Ψres(Z) =
Zδ−1Γ(δ/2)2/Γ(δ), and thus (23) reads, for almost every v and I,

(26) Q(f, g)(v, I) =
Γ(δ)

Γ(δ/2)2

∫
R3×(R+)2×S2

(
f ′g′∗

(
II∗

I ′(I + I∗ − I ′)

)δ/2−1

− fg∗

)

×B(v, v∗, I, I∗, I
′, σ)1[0,I+I∗](I

′)
(I ′ I ′∗)

δ/2−1

(I + I∗)δ−1
dv∗ dI∗ dI

′ dσ.

The equilibrium (24) becomes, for almost every v and I,

(27) M(v, I) =
n

Γ(δ/2)

(m
2π

)3/2
(kBTint)

−(δ+3)/2 Iδ/2−1 exp

(
−m|v − u|2

2kBTkin

− I

kBTint

)
.

2.3. Polyatomic gas with discrete internal energies. Let us now describe another
approach to model the degrees of freedom associated to internal energy for a single
polyatomic gas. Instead of considering a continuous internal energy variable, one can
introduce Nint ≥ 2 different internal energies

{
I(1), ..., I(Nint)

}
⊂ R+, see for instance

[17, 20, 22]. Each collision can then be represented by two pre-collisional pairs and two
corresponding post-collisional pairs, respectively indexed by (k, ℓ) and (k′, ℓ′), with k, ℓ,
k′, ℓ′ ∈ {1, ..., Nint}. More precisely, consider two colliding molecules of mass m with ve-
locities and internal energies (v, I(k)) and (v∗, I

(ℓ)), changing into (v′, I(k
′)) and (v′∗, I

(ℓ′)),
and define the internal energy gap

∆I(kℓ,k
′ℓ′) = I(k

′) + I(ℓ
′) − I(k) − I(ℓ).

The microscopic momentum and energy conservations are now written as

mv +mv∗ = mv′ +mv′∗,(28)
m

2
|v|2 + m

2
|v∗|2 + I(k) + I(ℓ) =

m

2
|v′|2 + m

2
|v′∗|2 + I(k

′) + I(ℓ
′).(29)

Equivalently, the conservations can be rewritten, defining the total energy E(kℓ,k′ℓ′) in the
center-of-mass reference frame, as

m

4
|V |2 + I(k) + I(ℓ) =

m

4
|V ′|2 + I(k

′) + I(ℓ
′) = E(kℓ,k′ℓ′).

The post-collisional velocities are then given by

v′ =
v + v∗

2
+

√
|V |2 − 4∆I(kℓ,k

′ℓ′)

m

σ

2
, v′∗ =

v + v∗
2

−

√
|V |2 − 4∆I(kℓ,k

′ℓ′)

m

σ

2
.
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The nonnegative collision kernel B is again assumed to satisfy symmetry and microre-
versibility relations as follows

B(v, v∗, I
(k), I(ℓ), I(k

′), I(ℓ
′), σ) = B(v∗, v, I

(ℓ), I(k), I(k
′), I(ℓ)

′
, σ)

= B(v, v∗, I
(k), I(ℓ), I(ℓ

′), I(k
′),−σ),

B(v, v∗, I
(k), I(ℓ), I(k

′), I(ℓ
′), σ) = B

(
v′, v′∗, I

(k′), I(ℓ
′), I(k), I(ℓ),

V

|V |

)
,

In this discrete internal energy case, the distribution function is studied under the form
f = (f (1), . . . , f (Nint)), where the component f (k) = f (k)(t, x, v) is the distribution function
for particles with internal energy I(k), for any k ∈ {1, . . . , Nint}. This allows now to define
the Boltzmann collision operator associated to the k-th component of the distribution
function, for almost every v ∈ R3,

(30) Q(k)(f, g)(v) =

Nint∑
ℓ,k′,ℓ′=1

∫
R3×S2

(
f (k′)(v′)g(ℓ

′)(v′∗)
φ(k)φ(ℓ)

φ(k′)φ(ℓ′)
− f (k)(v)g(ℓ)(v∗)

)
×B(v, v∗, I

(k), I(ℓ), I(k
′), I(ℓ

′), σ)φ(k′)φ(ℓ′) |V ′|
(E(kℓ,k′ℓ′))

1/2
dv∗ dσ.

The equilibrium states are characterized by the following H-theorem.

Proposition 3. The three following properties are equivalent:

(i) Q(k)(M,M) = 0 for any k ∈ {1, ..., Nint},

(ii)

Nint∑
k=1

∫
R3

Q(k)(M,M)(v) log

[
M (k)(v)

φ(k)

]
dv = 0,

(iii) there exist n ≥ 0, u ∈ R3 and T > 0 such that, for every k ∈ {1, ..., Nint} and
almost every v,

(31) M (k)(v) =
n

q

(
m

2πkBT

)3/2

φ(k) exp

(
−m|v − u|2

2kBT
− I(k)

kBT

)
,

with q =
Nint∑
k=1

φ(k) exp

(
− I(k)

kBT

)
being the discrete version of the integral (25).

2.4. Polyatomic models for mixtures.

2.4.1. Borgnakke-Larsen model for a mixture of monatomic and/or polyatomic gases.
Consider a mixture of N ≥ 2 monatomic or polyatomic species. Let us denote by M
the set of indices corresponding to monatomic gases, and P the one corresponding to
polyatomic gases, so that M ∪ P = {1, . . . , N}. For any polyatomic species i ∈ P , the
parameter used in (4) is denoted by δi > 0, which is related to the number of internal
degrees of freedom of the molecules. For two colliding molecules of species i and j, with
respective masses mi and mj, velocities v and v∗, and (if polyatomic) internal energies I
and I∗, the microscopic momentum and energy conservations are now written as

miv +mjv∗ = miv
′ +mjv

′
∗,

mi

2
|v|2 + mj

2
|v∗|2 + I1i∈P + I∗1j∈P =

mi

2
|v′|2 + mj

2
|v′∗|2 + I ′1i∈P + I ′∗1j∈P ,

or equivalently with the energy conservation law in the center-of-mass frame

Eij =
µij

2
|V |2 + I1i∈P + I∗1j∈P =

µij

2
|V ′|2 + I ′1i∈P + I ′∗1j∈P ,

where µij =
mimj

mi+mj
is the reduced mass.
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Let us now detail, for each case, the explicit expressions of the collision rules with a
Borgnakke-Larsen-like parametrization for polyatomic gases [18], as well as the ones of
the corresponding collision operators [2, 1].
Collision between two monatomic molecules. In this case, the collision rules can be
written with the same parametrization σ ∈ S2 as in the single species case, i.e.

v′ =
miv +mjv∗
mi +mj

+
mj

mi +mj

|V |σ, v′∗ =
miv +mjv∗
mi +mj

− mi

mi +mj

|V |σ.

The collision kernels Bij(v, v∗, σ) ≥ 0 are again assumed to satisfy a symmetry and a
microreversibility property as follows

(32) Bij(v, v∗, σ) = Bji(v∗, v,−σ) = Bij

(
v′, v′∗,

V

|V |

)
,

Remark 3. Due to the indistinguishability of particles of the same species, in a binary
intraspecies collision, we do not distinguish which of the two particles has which velocity
after the collision (both outcomes are assumed to be equally probable). Therefore, either
pre- or post-collisional velocities can be separately interchanged without affecting the col-

lision kernel. Noting that σ = v′−v′∗
|v′−v′∗|

, one obtains the symmetry properties

Bii(v, v∗, σ) = Bii(v∗, v, σ) = Bii(v∗, v,−σ) = Bii(v, v∗,−σ).

Note that the last two equalities are also consequences of the first symmetry and the
microreversibility property.

In an interspecies collision, this is not the case anymore. The two particles are now dis-
tinguishable and one has to tell apart which particle has which velocity. The interchange of
the particle roles, highlighted by the interchange of indices in the collision kernels, implies
the interchange of both pre- and post-collisional velocities simultaneously. Therefore, the
only symmetry property which remains true is (32).

The Boltzmann collision operator is then written, for almost every v, as

(33) Qij(f, g)(v) =

∫
R3×S2

(f ′g′∗ − fg∗)Bij(v, v∗, σ) dv∗ dσ.

Collision between two polyatomic molecules. When at least one polyatomic species
is involved, the velocity collision rules become

v′ =
miv +mjv∗
mi +mj

+
mj

mi +mj

√
2REij

µij

σ,(34)

v′∗ =
miv +mjv∗
mi +mj

− mi

mi +mj

√
2REij

µij

σ.(35)

With the usual Borgnakke-Larsen parametrization, the repartition between the two mi-
croscopic internal energies provides

(36) I ′ = r(1−R)Eij, I ′∗ = (1− r)(1−R)Eij.

Again, symmetry and microreversibility are required for the collision kernels, i.e.

Bij(v, v∗, I, I∗, r, R, σ) = Bji(v∗, v, I∗, I, 1− r, R,−σ) = Bij

(
v′, v′∗, I

′, I ′∗, r
′, R′,

V

|V |

)
.

Remark 4. When i ̸= j, the interchange of the particle roles implies the interchange of
both the pre- and post-collisional internal energies, additionally to the interchange of both
the pre- and post-collisional velocities as in Remark 3. Thus the symmetry property has
to involve both changes σ into −σ and r into 1− r.
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The collision operator for two polyatomic molecules of species i, j ∈ P reads, for almost
every v and I,

(37) Qij(f, g)(v, I) =

∫
R3×R+×(0,1)2×S2

(
f ′g′∗

(
I

I ′

)δi/2−1(
I∗
I ′∗

)δj/2−1

− fg∗

)

×Bij(v, v∗, I, I∗, r, R, σ) rδi/2−1(1− r)δj/2−1 (1−R)δi/2+δj/2−1
√
R dv∗ dI∗ dR dr dσ.

Collision between one polyatomic molecule and one monatomic molecule. In
the case of a collision between one polyatomic and one monatomic molecule, the collision
rules (34)–(35) still hold. Nevertheless, other expressions are changed, since there is no
parameter r anymore associating the internal energy to each species.

If a polyatomic molecule of species i ∈ P collides with a monatomic molecule of species
j ∈ M, we have for the internal energy

I ′ = (1−R)Eij,

the symmetry and microreversibility assumptions on Bij are given by

(38) Bij(v, v∗, I, R, σ) = Bji(v∗, v, I, R,−σ) = Bij

(
v′, v′∗, I

′, R′,
V

|V |

)
,

and the collision operator is written, for almost every v and I, as

(39) Qij(f, g)(v, I) =

∫
R3×(0,1)×S2

(
f(v′, I ′)g(v′∗)

(
I

I ′

)δi/2−1

− f(v, I)g(v∗)

)

×Bij(v, v∗, I, R, σ) (1−R)δi/2−1
√
R dv∗ dR dσ.

In the opposite case, when i ∈ M and j ∈ P , the post-collisional internal energy is
given by

I ′∗ = (1−R)Eij,

the assumptions on Bij are given by

(40) Bij(v, v∗, I∗, R, σ) = Bji(v∗, v, I∗, R,−σ) = Bij

(
v′, v′∗, I

′
∗, R

′,
V

|V |

)
,

and the collision operator becomes, for almost every v,

(41) Qij(f, g)(v) =

∫
R3×R+×(0,1)×S2

(
f(v′)g(v′∗, I

′
∗)

(
I∗
I ′∗

)δj/2−1

− f(v)g(v∗, I∗)

)

×Bij(v, v∗, I∗, R, σ) (1−R)δj/2−1
√
R dv∗ dI∗ dR dσ.

In the previous equalities (33), (37), (39) and (41), both f and g are scalar functions
related to the species i and j. In order to define the i-th component Qi of the vector
collision operator, we must emphasize that its argument has to be all the scalar functions
related to any species at the same time. In other words, we use the vector forms f =
(f1, . . . , fN), g = (g1, . . . , gN), and then write, for any i ∈ {1, . . . , N},

(42) Qi(f, g) =
N∑
j=1

Qij(fi, gj).

Then, as usual, the equilibria are described thanks to the following H-theorem.

Proposition 4. The three following properties are equivalent:
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(1) Qi(M,M) = 0 for any 1 ≤ i ≤ N ,
(2) the following equality holds∑

i∈M

∫
R3

Qi(M,M)(v) logMi(v) dv

+
∑
i∈P

∫
R3×R+

Qi(M,M)(v, I) log
(
Mi(v, I)I

1−δi/2
)
dv dI = 0,

(3) there exist n = (n1, . . . , nN) ∈ RN
+ , u ∈ R3 and T > 0 such that, if i ∈ M, for

almost every v,

(43) Mi(v) = ni

(
mi

2πkBT

)3/2

exp

(
−mi|v − u|2

2kBT

)
,

and if i ∈ P, for almost every v and I,

(44) Mi(v, I) =
ni

Γ(δi/2)

(mi

2π

)3/2
(kBT )

−(δi+3)/2Iδi/2−1 exp

(
−mi|v − u|2

2kBT
− I

kBT

)
.

2.4.2. Mixture of polyatomic gases with discrete internal energies. We now extend the
model described in Section 2.3 to a mixture of N polyatomic gases [20, 22], with molecular
masses m1, ...,mN , where the polyatomicity of each species i ∈ {1, ..., N} is modeled by

Nint,i ≥ 1 different internal energies {I(1)i , ..., I
(Nint,i)
i } ⊂ R+.

Observe that if Nint,1 = · · · = Nint,N = 1 (with φ
(1)
1 = · · · = φ

(1)
N = 1), the model

reduces to the case of a mixture of monatomic species. We obtain a mixture model of
monatomic and polyatomic species as soon as there exist at least one index i such that

Nint,i = 1, with φ
(k)
i = 1, meaning that species i is monatomic, and at least one index j

such that Nint,j ≥ 2, meaning that species j is polyatomic.
Each collision can then be represented by two pre-collisional pairs and two correspond-

ing post-collisional pairs, respectively indexed by k, ℓ and k′, ℓ′, with k, k′ ∈ {1, . . . , Nint,i},
and ℓ, ℓ′ ∈ {1, . . . , Nint,j}. More precisely, consider two colliding molecules of mass mi

and mj with velocities and internal energies (v, I
(k)
i ) and (v∗, I

(ℓ)
j ), changing into (v′, I

(k′)
i )

and (v′∗, I
(ℓ′)
j ), and define the internal energy gap

(45) ∆I
(kℓ,k′ℓ′)
ij = I

(k′)
i + I

(ℓ′)
j − I

(k)
i − I

(ℓ)
j .

The microscopic momentum and energy conservations are given by

miv +mjv∗ = miv
′ +mjv

′
∗,(46)

mi

2
|v|2 + mj

2
|v∗|2 + I

(k)
i + I

(ℓ)
j =

mi

2
|v′|2 + mj

2
|v′∗|2 + I

(k′)
i + I

(ℓ′)
j .(47)

Equivalently, the energy conservation can be rewritten in the center-of-mass reference
frame, with the total energy

E
(kℓ,k′ℓ′)
ij =

µij

2
|V |2 + I

(k)
i + I

(ℓ)
j =

µij

2
|V ′|2 + I

(k′)
i + I

(ℓ′)
j .

The post-collisional velocities are then given by

v′ =
miv +mjv∗
mi +mj

+ σ
µij

mi

√
|V |2 − 2

µij

∆I
(kℓ,k′ℓ′)
ij ,

v′∗ =
miv +mjv∗
mi +mj

− σ
µij

mj

√
|V |2 − 2

µij

∆I
(kℓ,k′ℓ′)
ij .
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The symmetry and microreversibility assumptions on the collision kernels for (i, j) ∈
{1, ..., N}2 are

Bij(v, v∗, I
(k)
i , I

(ℓ)
j , I

(k′)
i , I

(ℓ′)
j , σ) = Bji(v∗, v, I

(ℓ)
j , I

(k)
i , I

(ℓ′)
j , I

(k′)
i ,−σ)

= Bij(v
′, v′∗, I

(k′)
i , I

(ℓ′)
j , I

(k)
i , I

(ℓ)
j ,

V

|V |
)

Bii(v, v∗, I
(k)
i , I

(ℓ)
i , I

(k′)
i , I

(ℓ′)
i , σ) = Bii(v∗, v, I

(ℓ)
i , I

(k)
i , I

(k′)
i , I

(ℓ′)
i , σ).

The corresponding collision operator is written, for almost every v, as

(48) Q
(k)
ij (f, g)(v) =

Nint,i∑
k′=1

Nint,j∑
ℓ,ℓ′=1

∫
R3×S2

(
f (k′)(v′)g(ℓ

′)(v′∗)
φ
(k)
i φ

(ℓ)
j

φ
(k′)
i φ

(ℓ′)
j

− f (k)(v)g(ℓ)(v∗)

)

×Bij(v, v∗, I
(k)
i , I

(ℓ)
j , I

(k′)
i , I

(ℓ′)
j , σ)φ

(k′)
i φ

(ℓ′)
j

|V ′|(
E

(kℓ,k′ℓ′)
ij

)1/2 dv∗ dσ,
with constant positive degeneracies φ

(1)
i , ..., φ

(Nint,i)
i for each species i. In the previous

equality (48), f is the vector function consisting of the components for all different internal
energies of species i, and g the one consisting of the components for all different internal
energies of species j. In order to define the i-th component of the vector collision operator,
its argument has to be all these vector functions related to any species at the same time,
as in the case of continuous energies (42). Therefore, we use the vector form of all
components for different internal energies of all species

f =
(
f
(1)
1 , . . . , f

(Nint,1)
1 , f

(1)
2 , . . . , f

(Nint,N−1)
N−1 , f

(1)
N , . . . , f

(Nint,N )
N

)
,

and using the same notation for a vector function g, the i-th component of the collision
operator is given, for any i ∈ {1, . . . , N}, by

Q
(k)
i (f, g) =

N∑
j=1

Q
(k)
ij (fi, gj).

We can then set, for any i,

(49) Qi(f, g) =
(
Q

(1)
i (f, g), . . . , Q

(Nint,i)
i (f, g)

)
,

which allows to state a part of the H-theorem that defines the equilibrium state.

Proposition 5. The three following properties are equivalent:

(1) Qi(M,M) = 0 for any i ∈ {1, ..., N},

(2)
N∑
i=1

Nint,i∑
k=1

∫
R3

Q
(k)
i (M,M)(v) log

[
M

(k)
i (v)

φ
(k)
i

]
dv = 0,

(3) there exist n = (n1, . . . , nN) ∈ RN
+ , u ∈ R3 and T > 0 such that, for any i ∈

{1, ..., N} and k ∈ {1, ..., Nint,i} and almost every v,

(50) M
(k)
i (v) =

ni

qi

(
mi

2πkBT

)3/2

φ
(k)
i exp

(
−mi|v − u|2

2kBT
− I

(k)
i

kBT

)
,

with qi =
Nint,i∑
k=1

φ
(k)
i exp

(
− I

(k)
i

kBT

)
.
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2.5. Boltzmann equation and linearized collision operator. The Boltzmann equa-
tion describes the time evolution of a system composed by a large number of particles,
described by a distribution function f defined on the phase space of the system. For the
sake of simplicity, we also assume that the system is isolated, so that there is no external
force acting on the particles. The time evolution of the distribution function f is governed
by the Boltzmann equation

(51)
∂f

∂t
+ (v · ∇x) f = Q (f, f) ,

where f denotes
• the scalar function f = f(t, x, v, I) in the case of a single polyatomic gas with contin-
uous internal energy,

• the vector function f =
(
f (1), . . . , f (Nint)

)
in the discrete internal energy case with

f (k) = f (k)(t, x, v),
• the vector function f =

(
f1, . . . , fN

)
, with fi = fi(t, x, v) if i ∈ M, and fi =

fi(t, x, v, I) if i ∈ P , in the case of a mixture with continuous internal energies,
• the vector function f =

(
f1, . . . , fN

)
, where each fi is given by the vector function

fi(t, x, v) =
(
f
(1)
i (t, x, v), . . . , f

(Nint,i)
i (t, x, v)

)
, in the discrete internal energy case.

In each case, the collision operator Q is a quadratic bilinear operator that accounts for
the change of velocities and internal energies of particles due to the binary collisions.
• For a single species, Q is given by (14) in the Borgnakke-Larsen framework, by (23)
in the resonant case, and by the vector form Q =

(
Q(1), . . . , Q(Nint)

)
, where each Q(k),

1 ≤ k ≤ Nint, is given by (30) in the discrete internal energy case.
• In the mixture case, when the internal energy variable is continuous, Q is naturally
defined as the vector expression Q =

(
Q1, . . . , QN

)
, where each Qi is given by (42).

• In the mixture case, when the internal energy variable is discrete, Q is again defined
as Q =

(
Q1, . . . , QN

)
, where, this time, each Qi is given by (49).

In order for us to describe the linearization setting in a unified way, let us rewrite the
scalar collision operator in the following way, for almost every w = (v, I),

(52) Q(f, g)(w) =

∫
D

(
f ′g′∗Φ− fg∗

)
A(W ) dW,

where the integration variable W is

(53) W =

{
(v∗, I∗, I

′, σ) for the resonant case,

(v∗, I∗, R, r, σ) for the Borgnakke-Larsen framework,

the integration domainD is eitherD = R3×(R+)
2×S2 orD = R3×(R+)×(0, 1)2×S2, Φ =

[(II∗)/(I
′I ′∗)]

δ/2−1, which is obviously similar for all continuous internal energy models,
and

(54) A(W ) =


B(v, v∗, I, I∗, I

′, σ) φ(I′)φ(I+I∗−I′)
Ψres(I+I∗)

(resonant),

B(v, v∗, I, I∗, r, R, σ)

× (r(1− r))δ/2−1 (1−R)δ−1
√
R (Borgnakke-Larsen).
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In the case of vector quantities, (52) can be extended in a straightforward way. First,
in the discrete internal energy case, Q(k) writes, for almost every w,

(55) Q(k)(f, g)(w)

=
N∑

k′,ℓ,ℓ′=1

∫
D

(
f (k′)(v′)g(ℓ

′)(v′∗)Φ
(kℓ,k′ℓ′) − f (k)(v)g(ℓ)(v∗)

)
A(kℓ,k′ℓ′)(W ) dW,

where w = v, W = (v∗, σ), D = R3 × S2, Φ(kℓ,k′ℓ′) = (φ(k)φ(ℓ))/(φ(k′)φ(ℓ′)) and

(56) A(kℓ,k′ℓ′)(W ) = B(v, v∗, I
(k), I(ℓ), I(k

′), I(ℓ
′), σ)

φ(k′)φ(ℓ′)|V ′|
(E(kℓ,k′ℓ′))1/2

.

Second, in the mixture case with a continuous internal energy variable, Qi writes, for
almost every w,

(57) Qi(f, g)(w) =
N∑
j=1

∫
D

(
f ′g′∗Φij − fg∗

)
Aij(W ) dW,

where w = (v, I) if i ∈ P and w = v if i ∈ M, W is defined by

(58) W =


(v∗, I∗, R, r, σ) if i, j ∈ P ,

(v∗, R, σ) if i ∈ P , j ∈ M,

(v∗, I∗, R, σ) if i ∈ M, j ∈ P ,

(v∗, σ) if i, j ∈ M,

with the relevant corresponding domain D, Φij is defined by

Φij =



(
I
I′

)δi/2−1
(

I∗
I′∗

)δj/2−1

if i, j ∈ P ,(
I
I′

)δi/2−1
if i ∈ P , j ∈ M,(

I∗
I′∗

)δj/2−1

if i ∈ M, j ∈ P ,

1 if i, j ∈ M,

and Aij(W ) by

(59) Aij(W ) =



Bij(v, v∗, I, I∗, r, R, σ)

× rδi/2−1(1− r)δj/2−1 (1−R)δi/2+δj/2−1
√
R, if i, j ∈ P ,

Bij(v, v∗, I, R, σ) (1−R)δi/2−1
√
R, if i ∈ P , j ∈ M,

Bij(v, v∗, I∗, R, σ) (1−R)δj/2−1
√
R, if i ∈ M, j ∈ P ,

Bij(v, v∗, σ) if i, j ∈ M.

Last, the case of a mixture of polyatomic gases with discrete internal energies is a
straightforward extension of (55) and (57) by writing, for almost every w,

Q
(k)
i (f, g)(w)

=
N∑
j=1

Nint,i∑
k′=1

Nint,j∑
ℓ,ℓ′=1

∫
D

(
f
(k′)
i (v′)g

(ℓ′)
j (v′∗)Φ

(kℓ,k′ℓ′)
ij − f

(k)
i (v)g

(ℓ)
j (v∗)

)
A

(kℓ,k′ℓ′)
ij (W ) dW,

where w = v, W = (v∗, σ), D = R3 × S2, Φ
(kℓ,k′ℓ′)
ij = (φ

(k)
i φ

(ℓ)
j )/(φ

(k′)
i φ

(ℓ′)
j ) and

(60) A
(kℓ,k′ℓ′)
ij (W ) = Bij(v, v∗, I

(k)
i , I

(ℓ)
j , I

(k′)
i , I

(ℓ′)
j , σ)

φ
(k′)
i φ

(ℓ′)
j |V ′|

(E
(kℓ,k′ℓ′)
ij )1/2

.
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Further, the associated equilibria for a single species are Maxwellian distributions M
given by (15) in the Borgnakke-Larsen framework, (27) in the resonant case, and (31)
when handling discrete internal energy levels. For mixtures, the Maxwellian distributions
Mi are defined in (43)–(44) for the Borgnakke-Larsen model, and (50) in the discrete
internal energy case.

The standard perturbative setting for the Boltzmann equation (51), combined with the
H-theorem, leads to considering deviations of Maxwellian distributions under the form

(61) f = M +M1/2h.

In this case, the linearized Boltzmann operator is defined as

(62) Lh = M−1/2
[
Q(M,M1/2h) +Q(M1/2h,M)

]
.

In the case of mixtures, this equation has to be understood in the following sense for any
1 ≤ i ≤ N

(63) [Lh]i = M
−1/2
i

N∑
j=1

[
Qij(Mi,M

1/2
j hj) +Qij(M

1/2
i hi,Mj)

]
.

This linearized Boltzmann operator can be written as L = K − νId, where the collision
frequency ν is defined with the notations of (52) as

ν(w) =

∫
D

M∗A(W ) dW.

The extension to vector quantities, with the notations of (55) or (57), is straightforward.
The operator K consists of three contributions and is given with the notations of (52)

by

(64) Kh(w) = M1/2

∫
D

(
(M−1/2h)′ + (M−1/2h)′∗ − (M−1/2h)∗

)
M∗A(W ) dW.

The extension to discrete internal energies is similar as in (55), whereas the extension to
mixtures has to be understood as in (57) and (63).

3. Compactness property of K

Recent works have tackled the question of the compactness of the operator K, defined
in (64), for the different polyatomic models presented in Section 2. In these papers, the
compactness property is proved under some assumptions on the collision kernels, basically
imposing some bounds on their growth.

Monatomic gases. Let us briefly recall under which assumption the operator K is com-
pact for monatomic gases, in the case of hard potential and with Grad’s cut-off assump-
tion, since it is the framework of all papers which tackled this question for polyatomic
gases. For more references on the monatomic case, see the review paper [12]. For both
monatomic single species and mixtures of monatomic gases, compactness of the opera-
tor K has been proved [21, 10] under the assumption (H1) stated below.

Hypothesis 1 (H1). There exist a constant C > 0 and an exponent 0 < ζ < 1 such that
the possible collision kernels B or Bij, for any 1 ≤ i, j ≤ N , satisfy

B(v, v∗, σ), Bij(v, v∗, σ) ≤ C |V |

(
1 +

1

|V |2−ζ

)
.
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Since monatomic gases are discussed in detail in [12], we do not discuss them here.

For a single polyatomic gas, we described three models: one written within the Borgnak-
ke-Larsen framework, one for resonant collisions, and one with discrete internal energies.
In those three cases, the assumptions on B made by the authors are slightly different. Let
us state them below.

Single polyatomic gas with continuous internal energy. For the model written
with the Borgnakke-Larsen procedure, several contributions appeared recently, obtained
under different assumptions.

Hypothesis 2 (H2). There exist a constant C > 0 and an exponent 0 < ζ < 1 such that

B(v, v∗, I, I∗, r, R, σ) ≤ CE

(
1 +

1

(|V | |V ′|)1−ζ/2

)
.

Hypothesis 3 (H3). Let ζ > −1. There exist a constant C > 0 and a function Ψ(r, R),
satisfying the symmetry condition Ψ(r, R) = Ψ (1− r, R) and the integrability condition

Ψ(r, R)2 (1− r)δ−3−ζ rδ/2−2R(1−R)3δ/2−3−ζ ∈ L1
(
(0, 1)2

)
,

such that

B(v, v∗, I, I∗, r, R, σ) ≤ CΨ(r, R)Eζ/2.

In this case, the compactness has been proved in two different contributions.

Theorem 1 (proved in [4]). For any δ ≥ 2, under Hypothesis (H2), the operator K is
compact from L2(R3 × R+) into itself.

Theorem 2 (proved in [16], [26]). For any ζ > −1, for δ and B satisfying Hypothesis
(H3), the operator K is compact from L2(R3 × R+) into itself.

Observe that Hypothesis (H3) couples the value of δ with the assumption on the collision
kernel B, through the integrability of the function Ψ. Let us also mention that in the
diatomic case (δ = 2), the operator K was also proved to be compact in [14], but under
more restrictive assumptions than Hypothesis (H3) with δ = 2.

Single polyatomic gas with resonant collisions. In the resonant case, the collision
kernel is assumed [8, 9] to be upper-bounded by a tensored form on (|V |, cos θ) on the one
hand and on (I, I∗, I

′) on the other hand.

Hypothesis 4 (H4). There exist two functions bkin and bint satisfying, for some constant
C > 0 and some exponents ζ ∈ [0, 1), ζ1 ∈ [0, 1/2) and ζ2 ∈ (−δ, δ),

0 ≤ bkin(|V |, cos θ) ≤ C
[
| sin θ|

(
|V |2 + |V |−1

)
+ |V |+ |V |−ζ + | sin θ|−ζ1

]
0 ≤ bint(I, I∗) ≤ C

(I + I∗)
ζ2/2

Ψres(I + I∗)
,

such that

B(v, v∗, I, I∗, I
′, σ) ≤ bkin(|V |, cos θ) bint(I, I∗)1I′≤I+I∗ ,

or any linear combination of such terms.

Under this assumption, the compactness of K can be proved.

Theorem 3 (proved in [9]). Under Hypothesis (H4), the operator K is compact from
L2(R3 × R+) into itself.
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Single polyatomic gas with discrete internal energy. In the case of discrete in-
ternal energies, an analogous result to Theorem 1 has been proved under the following
assumption.

Hypothesis 5 (H5). There exist a constant C > 0 and 0 < ζ < 1 such that for any
1 ≤ k, k′, ℓ, ℓ′ ≤ Nint

B(v, v∗, I
(k), I(ℓ), I(k

′), I(ℓ
′), σ) ≤ C

(
E(kℓ,k′ℓ′)

)1/2(
1 +

1

(|V | |V ′|)1−ζ/2

)
.

Theorem 4 (proved in [3]). Under Hypothesis (H5), the operator K is compact from
L2(R3)Nint into itself.

Mixture of monatomic and polyatomic gases with continuous internal energy.
When considering a mixture with polyatomic gases, several configurations can occur, if
also monatomic gases exist in the mixture. Moreover, as for the case of a single species,
different contributions appeared in the literature, using different assumptions. These
contributions are natural extensions of the results we mentioned in the previous subsection
about the single species case.

Hypothesis 6 (H6). There exist a constant C > 0 and 0 < ζ < 1 such that the possible
Bij, for any 1 ≤ i, j ≤ N , satisfy

Bij(v, v∗, I, I∗, r, R, σ), Bij(v, v∗, I, R, σ), Bij(v, v∗, I∗, R, σ), Bij(v, v∗, σ)

≤ CE
1/2
ij

(
1 +

1

(|V | |V ′|)1−ζ/2

)
.

Hypothesis 7 (H7). Let ζij > −1. There exist a constant C > 0 and functions Ψij(r, R)
satisfying the symmetry condition Ψij(r, R) = Ψij(1−r, R) and the integrability conditions

Ψij(r, R)2(1− r)δj/2−2r(δi+δj)/2−3−ζijR(1−R)δi/2+δj−3−ζij ∈ L1((0, 1)2),

Ψij(r, R)2(1− r)δj−3−ζijrδi/2−2R(1−R)δi/2+δj−3−ζij ∈ L1((0, 1)2),

such that
Bij(v, v∗, I, I∗, r, R, σ) ≤ C Ψij(r, R)E

ζij/2
ij .

Theorem 5 (proved in [5]). For any (δi)1≤i≤N with δi ≥ 2, under Hypothesis (H6), the
operator K for a mixture of polyatomic gases involving possibly also monatomic gases is
compact from L2(R3)|M| × L2(R3 × R+)

|P| into itself, up to an index reordering.

Theorem 6 (proved in [15], [26]). For any (ζij)1≤i,j≤N with ζij > −1, for (δi)1≤i≤N

and Bij satisfying Hypothesis (H7), the operator K for a mixture of polyatomic gases is
compact from L2(R3 × R+)

N into itself.

Observe that, as in Hypothesis (H3), (H7) couples the values of δi and δj with the
assumption on the collision kernel Bij, through the integrability of the function Ψij.

Mixture of monatomic and polyatomic gases with discrete internal energy.
As before, for discrete internal energies, the single species case is also extended to the
mixtures of polyatomic gases, with possibly monatomic species. The assumption on the
collision kernel is adapted as follows.

Hypothesis 8 (H8). There exist a constant C > 0 and 0 < ζ < 1 such that for any
1 ≤ k, k′ ≤ Nint,i, 1 ≤ ℓ, ℓ′ ≤ Nint,j,

Bij(v, v∗, I
(k)
i , I

(ℓ)
j , I

(k′)
i , I

(ℓ′)
j , σ) ≤ C

(
E

(kℓ,k′ℓ′)
ij

)1/2(
1 +

1

(|V | |V ′|)1−ζ/2

)
.
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The compactness result follows.

Theorem 7 (proved in [6]). Under Hypothesis (H8), the operator K for a mixture of
polyatomic gases involving possibly also monatomic gases, is compact from L2(R3)N

tot
int ,

where N tot
int =

∑N
i=1Nint,i, into itself.
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