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Abstract

We present a subjective selection of methods for complex systems anal-
ysis; ranging from statistical tools, through numerical methods based on
AI, to both linear and non-linear ODEs and PDEs. All the notions are
presented in the context of applied problems to visualise the strengths
and drawbacks in the approach. The major aim of capturing such a broad
overview is to understand the interrelations between network theories that
seem to be distant from the mathematical perspective.

1 Introduction

In the modelling of real life phenomena, the choice of appropriate math-
ematical tools is the first challenge that one needs to face and is known
for its complexity. Striving to accuracy, one heads to incorporate possi-
bly much crucial information about the described process; and, what is
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equally important, to eliminate information that influences major aspects
of the process in the minor way.

Especially in the fields where social and biological aspects play a role;
individual variability, abundance of interconnected sub-components of a
phenomenon and uncertainty on their actual interactions, make mathema-
tisation of this branch of science essentially more difficult than for instance
in physics. As a consequence, the choice of methods becomes arbitrary
and in many cases depends more on the field of expertise of the modeller
than on objective reasons. The question on the interplay between different
techniques arises naturally and lies in the core of mathematical modelling.

In response to this issue, we propose to examine a bunch of open prob-
lems in a wide range of topics such as language studies, finances, ecology,
economy, epidemiology or traffic flow. All these questions are bonded by
the need to characterise complex dynamics dealing with uncertainty at
different description levels. Consequently, a wide range of mathematical
methods is applied ranging from statistical analysis, through numerical
methods based on AI, to both linear and non-linear ODEs and PDEs. All
of them however developed their own mathematical language to incorpo-
rate the notion of a network that allows to cluster entities that join certain
dynamical properties from one hand, and to state interdependence from
another.

The authors do not claim to present either optimal methodology for
dealing with presented open problems, or to give the comprehensive sum-
mary of toolbox for dynamical systems on network problems. In fact,
quite the contrary. Each section is a subjective choice of methods that
proved to be useful in dealing with very specific applied problems (pre-
sented in Section 2). They are divided based on the type of network that
lies in the core of the model and can be assigned to one of four categories
(defined formally in Section 3), namely: (combinatorial) digraphs (in Sec-
tion 4), graphs with dynamics in vertices (in Section 5), metric graphs (in
Section 6) and embedded metric graphs (in Section 7).

The picture that emerges from the above description is a wide range
of models that offer different ways in the space and time discretisation
and vary in connections between modeled subsystems. Even so, one can
encounter clear mathematical bridges that fasten some parts of theories
with others. It authorises the impression that there are significant similar-
ities in network models that deserve further examination. Our thoughts
on these relations being a summary of several discussions engaged among
the broad representation of specialists in dynamical systems on networks
gathered in the COST Action Mathematical models of interacting dynam-
ics on networks can be found in Section 8.

Up to our best knowledge, this is the first paper that encompasses
such a broad perspective on the world of dynamical systems on networks.
We invite the reader for the journey where we avoid highways of general
theories and choose country roads to look in detail into some very specific
aspects of arbitrarily chosen topics. We hope that in this round trip
many network specialists find the hometown of their expertise. It may
be a good starting point for the trip. Depending on the interest of the
reader, for some topics window sightseeing might be enough, but in any
time one decides for a stopover there are references that direct from this

2



small snippet to more detailed mathematical study of a topic.
Finally, we hope that making the whole tour brings us closer to the

understanding of what are the major factors that should be taken into
account when choosing different mathematical apparatus. The wider per-
spective should highlight gains and loses in the choice of different math-
ematical settings. Finally, including such different methods in one study
indicates that our world of networked dynamical systems is indeed a global
village and we can draw inspirations and exchange the concepts one from
another. Buon viaggio!

2 Problem descriptions

2.1 Ecology inspiring economy
One of the natural examples of networks in life sciences are food webs.
They describe the physical foundation of an ecosystem as mass flows be-
tween functional groups of species and their exchange with the environ-
ment. They can be regarded as akin to economic networks as both consist
of vertices processing and exchanging matter with each other [30, 44]. This
enables us to compare properties of these two types of networks and draw
inspiration from nature for man-made systems. For example, compar-
ing cycling in these systems is motivated by the goal of a circular econ-
omy, that aims to make production processes more sustainable [28, 67].
Such attempts at mimicking food webs were postulated in the context
of thermodynamic power cycles [43], industrial parks [42], recycling net-
works [64, 41], and the whole economy in view of the limits to growth [35].
What can we learn from natural network processes?

2.2 The riddle of language acquisition
Despite recent advances in neural machine translation and large language
models, foreign language learning is still a valid goal for large numbers
of students. In today’s increasingly globalizing world, more and more are
deciding to spend at least part of their academic journey at a foreign
university. Alongside being attracted by fresh course offerings, the oppor-
tunity to travel, experience a new culture and gain new friends, as well
as scoring points for their future résumés, one of the chief motivations
behind study abroad is advancing one’s skills in the language of the tar-
get country. However, during their stay abroad not all sojourners make
visible linguistic progress, and considerable variation has been evidenced
among those that do. It is commonsensical to expect that a crucial role in
second language development will be played by students’ interaction net-
works, but how exactly does participants’ position/centrality affect their
progress across different linguistic competencies [58, 59], what is the im-
pact of the subcommunities/clusters that regularly form in peer cohorts
[57], and how do students’ language learning trajectories and social be-
haviors pattern over time [56]?
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2.3 Missing data in financial stability modelling
The Bank for International Settlements (BIS) and the related database
supports central banks in their pursuit of monetary and financial stability.
The related database is owned by 60 central banks and maintained by
48 reporting countries. In 2017 it represented 94% of all the cross-border
claims of banks and covered about 95% of the world’s Gross Domestic
Product. The database [17] is incomplete, since only some estimates can
be got from the not−reporting countries. The question is: whether the
available dataset is used for estimating the effects of financial contagions,
i.e. a cascade failure, is the result reliable? Or, wording it differently, are
the missing links playing a relevant role in the contagions dynamic? [15].

2.4 Subscribing the pension plan
Pension funds (PF) need to propose investments based on stock markets
for the sustainability of the future pensions. Should a potential subscriber
of a specific PF have clear preferences on the reliability of the PF when
examining such investments? Are the actual investments an overall good
choice for the stability of the PF system? The present work contributes to
show how complex network analysis helps to understand the risk involving
the whole set of Italian pension funds. In our analysis each pension fund is
a network, and its set of investment is reported through a list of declared
benchmarks. A link joins two nodes of the network anytime they declare a
common benchmark. The detection of communities through the Louvain
algorithm and the k-shells show quite a remarkable overlap among the in-
vestment of pension funds. These findings show that eventual fluctuations
of even a few benchmarks may cause serious consequences in the financial
wealth of PF investments, so the system is very fragile [16]. Moreover, the
information on the investments of PF based on the stock markets provide
very limited hint for the selection of the best PF to subscribe.

2.5 Network identification with missing measure-
ments
Network identification roughly consists in revealing the structure of a
graph from data that are generated by agents located at the vertices of the
graph and connected to other agents according to the network topology.
This problem arises in many contexts, such as neuroscience (e.g. capturing
the connections between cerebral regions from brain imaging data), genet-
ics (e.g. inferring gene regulatory networks from gene expression data),
social sciences (e.g. measuring influences between individuals on social
medias), and finance (e.g. detecting interconnectedness between financial
institutions), to list a few. Those situations usually involve large-scale
networks, so that measuring all the vertices is out of reach. Moreover,
since measurements can possibly be costly or time-consuming, there is a
need for methods that only require local measurements at a few vertices,
but are still capable of revealing global topological properties in large
networks. Specific problems include, for instance, inferring the average
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number of connections between the agents from sparse measurements, de-
tecting a change in the network topology from a remote measurement, and
assessing the mutual influence between agents (i.e. community detection).

2.6 Network synchronisation
When a large number of agents are coupled through a complex network of
interactions, these interactions lead to cooperative phenomena and emer-
gent properties of the overall dynamical system. An agent can be a model
of, for example a ground/underwater vehicle, an aircraft, a satellite, or
a smart sensor with microprocessors, while interactions can typically be
modelled as an information exchange. An important problem in the study
of dynamical systems over networks concerns the emergence of coherent
behaviour in which the elements of the system follow some dynamical pat-
tern, i.e. are synchronised. The problems of this type include formation
control, flocking, distributed estimation, consensus, and appear in differ-
ent disciplines, including biology, physics, robotics, and control theory
and problems, see e.g. [6]. In the presence of external disturbances of the
system, one may want to measure or reduce the impact of disturbances
on the synchronisation, and the corresponding problem is called almost
synchronisation. Typically disturbances are modelled as stochastic pro-
cesses, and one uses H2 or H∞ norms from systems theory as performance
measures of the system. Specific applications include satellite formation
flying, distributed computing, robotics, surveillance and reconnaissance
systems, electric power systems, cooperative attack of multiple missiles,
intelligent transportation systems, and neural networks.

2.7 Tracing virus’ variants in fragmented envi-
ronment
In 2019, due to the outbreak of SARS-CoV-2 pandemics, the problem of
monitoring the spread of infectious disease changed into a global challenge.
In the first years of pandemics the major question was to estimate prop-
erly the real number of colonised and infected patients in order, first, to
estimate the basic reproduction number, known as R0 parameter, and in
the consequence, to navigate wisely in policy responses. Since December
2020, when the first COVID-19 vaccine has been released, more and more
attention has been focused on the problem of tracing the new variants, in
particular those whose response to the vaccine is weaker. Modelling the
prevalence of patients colonised by the particular variant of a SARS-CoV-
2 virus in the local environment allows for either the production of more
tailor-made vaccines, similarly to flu vaccines, or at least for the wider
availability of this among different vaccine that should be more efficient
for particular groups of patients.

2.8 Optimizing road traffic
Urban road transport poses significant challenges to civilization and eco-
nomic activity, impacting quality of life and productivity. Addressing
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these issues requires interdisciplinary approaches and sustainable urban
planning strategies to alleviate traffic-related negative effects. One such
approach involves optimizing traffic signal settings for given traffic condi-
tions, but this problem has been proven to be NP-hard even for relatively
simple traffic models [13]. Also, even evaluating the quality of different
traffic signal settings can be time-consuming, especially on a large scale.
Therefore, there is a need to develop new traffic modeling and optimiza-
tion methods.

3 Preliminary network description

3.1 Combinatorial digraphs
The basic object of our consideration is a digraph (known also as di-
rected graph) G = (V,E,Φ±,W ) with sets of vertices V = {vi}i∈I , I =
{1, . . . , n}, and edges E = {ej}j∈J ⊂ V × V , J = {1, . . . ,m}. The graph
structure is encoded by in- and out-incidence matrices Φ± = (ϕ±

i,j)i∈I,j∈J

defined as

ϕ+
ij =

{
1 if

ej→ vi,
0 otherwise,

ϕ−
ij =

{
1 if vi

ej→,
0 otherwise,

(1)

and a weight matrix W = diag(wj)j∈J , wj > 0, j ∈ J .
If all weights are equal, we call G an unweighted digraph. By a (undi-

rected) graph we understand a digraph having a property that for any
(vi, vj) ∈ E, (vj , vi) ∈ E. We also denote by E±

vi sets

E+
vi = {ej ∈ E :

ej→ vi}, E−
vi = {ej ∈ E : vi

ej→},

and their weights’ counterparts W±
vi

W±
vi = {wj : ej ∈ E±

vi}, Wvi = W+
vi +W−

vi . (2)

If ek = (vi, vj) ∈ E then vi is a tail and vj is a head of an edge. We
say that a vertex vi ∈ V is a source (resp. a sink) if

∑
j∈J Φ+

ij = 0 (resp.∑
j∈J Φ−

ij = 0). Furthermore, ej is a loop if there exists vi ∈ V being both
its head and tail. By the multiple edge in the digraph we understand at
least two edges all having a head in vi ∈ V and a tail in vj ∈ V . By the
l-length path in the graph we understand a sequence of edges e1, e2, . . . , el,
ei ∈ E, i = 1, . . . , l; such that for each i = 1, . . . , l, there exists ki ∈ I
such that ϕ+

kii
= ϕ−

kii+1. We say that a digraph is connected if for any
two vertices vi, vk ∈ V there exists a path such that its first edge has a
tail in vi and the last edge has a head in vk.

In this paper we restrict our consideration to connected digraphs hav-
ing a finite number of vertices and edges, and no multiple edges (loops are
allowed).

When considering the dynamics in the vertices of digraphs it is con-
venient to define operators between vertices. By weighted in- and out-
adjacency matrices, A±

w = (aw±
ij )i,j∈I , (A+

w)
T = A−

w , we understand

aw+
ij =

{
wk if ∃ek∈E vj

ek→ vi
0 otherwise.
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If we replace aw±
ij ̸= 0 with a±

ij = 1, we say that A± = (a±
ij)i,j∈I is an

(unweighted) in- and out- adjacency matrix.
To give the number of edges entering or going out from the vertex and

their cumulative weight we define respectively (unweighted) in- and out-
degree matrices D± = diag(deg±(vi))i∈I and weighted in- and out-degree
matrices D±

w = diag(deg±w(vi))i∈I

deg±(vi) =
∑
j∈J

ϕ±
ij , deg±

w(vi) =
∑
j∈J

ϕ±
ijwj . (3)

The undirected unweighted adjacency matrix is defined as

A = A+ +A−, (4)

and the unweighted degree matrix as

D = D+ +D−, (5)

while undirected weighted adjacency matrix by

Aw = A+
w +A−

w . (6)

Let us also mention two other basic operators that are used to charac-
terise the dynamics associated with vertices, namely advection and Lapla-
cian matrix. In the case of directed graphs they can be defined at various
ways and consequently one can find many names of the same objects. In
this paper we mostly follow the notation from [51]. Hence, weighted in-
and out-advection matrices are N±

w = (N±
w,ij)i,j∈I such that

N+
w = D−

w −A+
w, N−

w = D+
w −A−

w . (7)

While, by weighted in- and out-degree Laplacian matrix L±
w = (L±

w,ij)i,j∈I

(known also as incoming and outgoing Kirchhoff matrix and denoted by
K±

w = (K±
w,ij)i,j∈I) we understand

L+
w = K+

w = D+
w −A+

w, L−
w = K−

w = D−
w −A−

w . (8)

Finally, by LB
w = (LB

w,ij)i,j∈I we denote weighted Laplacian-Beltrami
matrix, namely

LB
w = L+

w + L−
w . (9)

To obtain unweighted counterparts of advection N± = (N±
ij )i,j∈I , Lapla-

cian L± = (L±
ij)i,j∈I (known as Kirchhoff K± = (K±

ij )i,j∈I) and Laplacian-
Beltrami matrices we consider unweighted degrees D± and unweighted ad-
jacency matrices A± in formulas (7), (8); as well as unweighted Laplacians
in (9).

Finally, when considering the dynamics defined on digraphs’ edges
it is convenient to also define operators between edges. A weighted in-
adjacency matrix of a line graph of G we call a matrix B±

w = (b±w,ij)i,j∈J

such that

b+w,ij =

{
wj if ∃vk∈V

ej→ vk
ei→

0 otherwise.

b−w,ij =

{
wi if ∃vk∈V

ej→ vk
ei→

0 otherwise.
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In the case of unweighted adjacency matrix B = (bij)i,j∈J of a line graph
of G, we consider bij = 1, when b±ij ̸= 0, and bij = b±ij otherwise.

3.2 Metric graphs
The second major group of networks used in the modelling of dynamical
systems are metric graphs. This concept is the generalisation of digraph
that allows to associate each edge with one dimensional metric space and
consequently define differential operators on the network.

Using mathematical formalism, let G = (G, d) be a metric graph where
G = (V,E,Φ±,W ) is a digraph defined in Section 3.1 and d : E → B(R),
for B(R) being the Borel σ-algebra, is a mapping of a form ej 7→ [0, lj ],
lj > 0 for any j ∈ J . Note that E = {ej}j∈J ⊂ V × V , is a set of edges of
digraph and J = {1, . . . ,m}.

In the metric graph the direction of an edge ej = (vi, vk) ∈ E, i, k ∈ I,
can be associated with the parametrisation of d(ej) hence by abuse of
notation we denote a tail (resp. head) of an edge ej by ej(0) = vi (resp.
ej(lj) = vk).

In the metric graph models the state space consists of edges that are
joined together by vertices in which they start and end. Finally, we head
to associate the network with the space it is embedded into. We say that
a digraph G = (V,E,Φ±,W ) is a planar digraph if it can be drawn on the
plane in such a way that its edges intersect only at their endpoints. For
every such network we can chose its planar representation defining for a
chosen v0 ∈ V a mapping Pv0 : {v0} × E → R2 × [0, 2π)m such that

Pv0 : (v0, e1, . . . , em) 7→ (x, y, α1, . . . , αm) (10)

associates a vertex v0 with a point (x, y) as its representation on the
plane, while αj gives an angle of edge ej with respect to Ox axis. We
say that GP = (V,E,Φ±,W, Pv0) is a planar embedding of a digraph
G = (V,E,Φ±,W ), while GP = (Gp, d) is a planar embedding of a metric
graph.

Finally, in the whole article we use the notation

In ∈ Rn×n, 1n = [1, . . . , 1]⊤ ∈ Rn, (11)

respectively, for identity matrix and vector that consist of all entries equal
to one.

4 Combinatorial digraphs

In this section statistical tools are applied to reveal the information en-
coded in the network structures. The authors consider the graphs mea-
sures which are the parameters that characterise certain properties of a
digraph: node degree, closeness, betweenness, pagerank, reciprocity or
Finn cycling index to mention a few. Another approach is to extend the
deterministic notion of a digraph into the Erdös–Renyi random structure
or Barabasi–Albert scale free networks.
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4.1 Networked ecosystems and economies
Studying the flow and cycling of matter in networks is crucial for un-
derstanding the fundamental physical structure of both ecosystems and
economies. Food webs describe how biomass moves between groups of
species in ecosystems, arising mostly from feeding relationships. Simi-
larly, input-output tables capture the flow of goods and services between
industries and consumers in an economy. In [33], 169 weighted food
webs and 155 economic networks are compared based on the fraction of
total system throughflow that is cycled, known as the Finn Cycling Index
(FCI).

In order to learn more about quantification of mass’ cycles let us
consider both food webs and economic networks as weighted digraphs
G = (V,E, ϕ±,W ), see Section 3.1, with weights W denoting the flow of
matter along edges. In this study the vertices are in addition characterised
by external export from each vertex o = (oi)i∈I , where oi ≥ 0.

The amount of matter leaving a node vi ∈ V , denoted by h = (hi)i∈I ,
is assumed to be positive and is given by

hi =

n∑
j=1

aw+
ji + oi > 0.

A transition matrix C = (cij)i,j∈I describes a probability that a unit of
mass moves between adjacent nodes, namely

cij =
aw+
ij

hj
for any i, j ∈ I.

Finally, in order to include indirect flows between nodes one defines overall
transition probability U = (uij)i,j∈I as the power series

U =

∞∑
q=0

Cq = (In − C)−1.

Matrix U is well-defined since C is sub-stochastic.
The Finn Cycling Index (FCI), see [26], of a vertex is the probability

that flow passing through a node returns (via direct or indirect flow) to
it at some time point, formally:

FCIi =
uii − 1

uii
, for any i ∈ I.

Note that uii ≥ 1 from the definition, and therefore FCI is a measure
that ranges from 0 to 1. A value of FCI = 0 indicates that there are no
directed cycles in the system, meaning that no flow originating from any
node returns to the same node through any path. Conversely, a value
of FCI = 1n, see (11), represents a system in which all flows eventually
return to their starting node.

The most basic form of cycling occurs when two nodes exchange mass
reciprocally. The network reciprocity r measures the fraction of such over-
lapping bilateral flows among all flows:

r =

∑
i,j∈I min[uij , uji]∑

k,l∈I ukl
∈ [0, 1].

9



If all flows are perfectly reciprocated, then r = 1. Whereas if there are no
nodes connected by flows in both directions we have r = 0.

The turns out that the FCI of food webs has a geometric mean of 5%,
with much of the cycling attributed to reciprocal flows and the recycling
of dead organic matter by detritivores. In contrast, the global economy in
2011 had an FCI of 3.7%. Furthermore, [33] highlights that unweighted
network measures used in the past, such as the largest eigenvalue of the
adjacency matrix, do not correlate with the actual cycling in weighted
networks.

Interestingly, both food webs and economic networks exhibited a strong
correlation between FCI and reciprocity, defined as the fraction of flow
that is immediately returned between two nodes. This suggests that pro-
moting reciprocity and local collaboration between network components
could be a simple strategy to enhance cycling without requiring global
knowledge of the system structure. The study emphasizes the importance
of relying on weighted network indicators to make sound inferences about
real-world systems.

A related work [62] developed an open-source Python package called
foodwebviz for visualizing weighted food webs. The package offers five
complementary methods: 1) a heat map of flows or diet proportions, 2)
an interactive graph for tracing matter flow, 3) an intuitive animation of
particles moving between nodes, 4) a summary bar plot of trophic level
exchanges, and 5) a heat map of trophic level flows. These tools facilitate
accompanying food web publications with clear, aesthetically appealing
visualizations that can engage the broader public and be incorporated
into education.

Together, these studies contribute to our understanding of mass cy-
cling in complex networks and provide practical tools for their analysis
and communication. They highlight the insights gained from weighted
network approaches and the potential for local strategies to enhance sus-
tainability in both ecosystems and economies.

4.2 Peer interactions and second language acqui-
sition during study abroad
In today’s increasingly globalizing world, more and more students are
deciding to spend at least part of their academic journey at a foreign uni-
versity. In this section of a paper we study conductive factors to second
language (L2) development as well as possible barriers. We are also in-
terested in the time evolution of students’ language learning trajectories
and social behaviors patterns.

Social network analysis (SNA) offers a successful line of inquiry permit-
ting answers to these questions [18, 31, 36, 49, 50, 58, 59, 57]. Particularly
fruitful have been computational analyses that go beyond investigations of
egocentric networks and instead attempt to reconstruct possibly complete
learner graphs. In this vein, an analysis of a cohort of Erasmus+ students
at a university in Germany demonstrates the potential of cluster detec-
tion algorithms, revealing the deleterious influence on language acquisition
of the formation of subcommunities composed of co-nationals and other
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Figure 1: Class of students enrolled in an intensive course of the Polish language
and culture showing clear partitioning along shared languages, German and
Russian.

speakers of the same native language, and the negative impact of close-
ness centrality, suggesting the advantage of maintaining fewer high-quality
interactions over several necessarily more superficial ones [57].

SNA also helps unearth heterophily in L2 German proficiency levels
among favorite contacts, revealing the understandably negligent impact
of this criterion in choosing friends, and the importance of the propor-
tion of using the target language vs merely being exposed to it passively.
Additional research in two iterations of a large-scale course of the Polish
language and culture in Warsaw revealed how the centrality metrics best
predicting measurable progress are closeness and degree with outdegree,
see (3), and betweenness also explaining subjectively perceived headway
in vocabulary and pronunciation [58, 59].

The study also showed background-language-based homophily among
students frequently interacting with one another, with clusters in the
stochastic blockmodels often aligning with learners’ shared languages (Fig-
ure 1).

The static data have already given us some knowledge, but what if
we are interested in whether observable changes can be noticed in the
patterns of students’ social interaction over time? Questions concerning
the changing dynamics of second language development and peer commu-
nication can be answered employing longitudinal network analyses with
several time points/snapshots; a new SNA paradigm in quantitative L2
research.

One recent project followed a full group of 41 U.S. students enrolled
in an intensive 3-month semester-long Arabic program in Amman, mea-
suring their social interaction and progress after every four weeks. The
findings revealed relative stability in terms of students’ positions in the
network, with a stable tendency to form cliques with peers of the same
gender (Figure 2), and the gender homophily strengthening with time
[56]. The results also showed that three out of five predictors of objec-
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Figure 2: Students’ interactions during the middle month of their sojourn
abroad.

tive progress were connected with social interaction (indegree, pagerank,
and perception of group integration), that presojourn proficiency in Ara-
bic negatively influenced initiating interactions in this language, and that
female students were spending considerably more time with their alma
mater classmates.

Network science has also led to epistemological contributions in other
fields of linguistics [34], shedding light on phenomena such as the social
diffusion of innovation, or the relationships between constructs in edu-
cational psychology. For instance, investigating the spread of neological
tags online, [61] showed the benefits of gaining authorized backend access
to an entire microblogging site, thus permitting insight into the degree of
the “saturation” of the system rather than merely raw numbers of occur-
rences of the expression of interest, revealing how resistance against the
adoption of novelty concentrates around relatively low values, that the
vast majority of the users are moderately innovative, and that the spread
of the most popular tags may be taking place during most users’ offline
time. Language education research has also benefited from psychologi-
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cal network analysis [22], a variable-centered relation-intensive approach
helpful in visualizing relationships between constructs and estimating the
relative importance of factors in complex networks of associations. This
type of network analysis has so far received relatively little attention from
linguists [27], but has already been used e.g. to provide insight into the
relationship between grit and its non-trivial predictors in online language
learning [60].

4.3 Network identification from BIS database
The process of decision−making is often based on the information avail-
able through databases that unfortunately in many cases are proven to
be incomplete. The present analysis, following the results in [15], aims
at understanding how bad is the missing information in the Bank for
International Settlements (BIS) database arising due to the existence of
non-reporting countries.

In the research gathered data are used to build up a digraph G, where
the countries are the nodes, and the weights of the directed links report
positive cross-border exposure. A contagion dynamics is set up consider-
ing two possible states of a node vj connected to a node vi: either Credit
(the node vj has a positive credit to the node vi) or Debt (the node vj
has a debt to the node vi) and two possible events on the node vi: either
Loss (the node vi loses value) or Gain (the node vi gains value). At first,
simulations are performed on the original BIS network, and on simulated
random networks (Erdos-Renyi) and scale free (Barabasi-Albert model).
As a second step, the total number of links in each network is increased
in two different ways: either at random, or adding more links among the
nodes which are less connected (’organizer periphery’).

The analysis performed clearly shows that incomplete data lead to
misleading information about robustness of the network. The increase of
links supposed to be missing increases the magnitude of the contagion;
moreover, the effect is at its worst in the case of organized peripheral.
The main conclusion is that the usage of the database as it is may lead to
potentially biased actions which could not achieve the goal of stabilizing
the system.

4.4 Would you subscribe my pension plan?
Pension funds (PF) account for quite a remarkable amount of the Gross
Domestic Product, which in the OECD area averages at 50.7%. The way
in which pension funds are able to pay the pensions is through invest-
ments. We focus the analysis on the similarity among the investments
according to the selection of the investments on risky assets from the
financial markets, and are referred through the declared benchmark. Al-
though the economic relevance is clear, the literature on the PF is quite
limited. Our aim is understanding the similarities among the PF through
tools and measures proper of the complex networks approach.

The starting point is building the undirected graph G in which nodes
vi ∈ V , i ∈ I, are the pension funds while edges’ weights wj , j ∈ J , mea-
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sure the overlap among pension funds due to the overlap on the bench-
marks, with

WV =
∑
j∈J

wj

being the sum of all weights in this network. For that, consider the
database reporting the Italian pension funds and the declared bench-
marks. Data has been provided by MEFOP (Italian Ministry) and refers
to the year 2017. The set includes 61 active sub-funds (belonging to 49
funds) with their 72 self-declared benchmarks. Data has been crosschecked
through the Bloomberg database. Our analysis focuses on open pension
fund (the one that anybody can subscribe to). Let H = (hil)i∈I,l∈L be a
matrix reporting the pension funds on the rows and the benchmarks on
the columns. hij ≥ 0 is the percentage of the investment of the fund vi
in the pension fund for a benchmark j. Let Aw = (aw±

ij )i,j∈I = H · HT

be a weighted undirected adjacency matrix, see (6), of a digraph G. In
complex networks literature this matrix is known as one–mode projec-
tion. Note that the object is well-defined since both rows and columns of
Aw are the pension funds. We are going to explore similarities through
the application of two clustering methods the Louvain method and the
k-shells.

The Louvain method for community detection follows a bottom-up
approach in which the nodes forming subnetworks as close as possible
to complete subnetworks are gathered together. More formally, let us
consider a division of a graph G into subnetworks {Gl : l ∈ L} and define
a Dirac function δ : V × V → {0, 1}, such that δ(vi, vj) = 1 when vi, vj
are in the same subnetwork. One optimizes the modularity related to the
division

Q ({Gl : l ∈ L}) = 1

2WV

∑
i,j∈I

[
aw
ij −

WviWvj

2WV

]
δ(vi, vj),

where Wvi ,Wvj are the sums of the weights of the edges attached to nodes
vi and vj respectively, see (2) for definition.

The k-shell of order k is defined as the set of nodes which have degree
at least n after all the nodes with degree at maximum k − 1 have been
removed. The procedure for the identification of the k shell is iterative.
The higher is k, the higher is the connection among the nodes in the same
shell.

The Italian open pension funds resulted to be quite strongly connected.
The Louvain method distributes them across all the communities; a sub-
group is also in the same community of the contractual pension funds,
which are intended to specific categories of workers, that can be set up
on the basis of collective agreements. The k-shell method confirms the
results of the Louvain method to a large extent.

5 ODEs on combinatorial graphs

In this section, we consider dynamical systems over networks (DSN), also
called networked dynamical systems. Let us consider a (large) number n of
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agents in interaction. Each agent indexed by i is described by its internal
state xi which evolves in time both because of an internal dynamics and
because of the coupling with the other units. A quite general form to
describe the evolution of the system is given by the set of equations

ẋi = Fi(x), (12)

where x = (x1, . . . , xn). The set of agents and their evolution equations
(12) can be seen as a digraph G = (V,E, ϕ±,W ), see Subsection 3.1, and
two vertices vi and vj are linked by a directed edge from vj to vi if the
evolution equation of the agent i depends on the state xj of the agent j.

We will focus on DSNs that consist of identical agents (or units) in-
teracting through a diffusive coupling:

ẋi = F (xi)+G(xi)
n∑

k = 1

a+
ikH(Q(xi)−Q(xk)) xi ∈ Rp, i ∈ I,

(13)
with the functions F : Rp → Rp such that F (0) = 0, G : Rp → Rp×r,
H : Rq → Rr, and Q : Rp → Rq such that Q(0) = 0. Coefficients a+

ik,
i, k ∈ I are the entries of a matrix A+, namely unweighted in-degree
adjacency matrix of G defined Section 3.1.

5.1 Network synchronisation
Here we will deal with output synchronisation problem, which can be
described as follows. Let the states of DSN be described by eq. (13) with
the underlying network structure described by the graph G and with the
corresponding agent outputs given by

yi = Q(xi). (14)

The goal of the output synchronisation [45] is to reach asymptotic agree-
ment between all agents, i.e.

lim
t→∞

(yi(t)− yj(t)) = 0, for all i, j ∈ I. (15)

One can look at this notion as a natural replacement of stability for dy-
namical systems on networks. Indeed, take F = 0, G = H = Q = 1
in eq. (13). Then the DSN corresponds to a so-called network of single-
integrators or a network without internal dynamics

ẋi = 0, i ∈ I,

coupled by the linear feedback with outputs being the states of the agents.
This system is invariant to translations, i.e. if we translate the initial
conditions xi(0) of all agents by the same amount, the differences between
the states will not change. One can easily check this by noting that the
vector 1, see (11), is the (right) eigenvector of L+. The same holds for
DSNs of double-integrators and other important systems. This implies
that such systems are always unstable and asymptotic stability does not
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hold. As an example, let us consider a general linear DSN with second
order dynamics in vertices. Let

ẍi = −Aẋi +Bui, yi =

[
xi

ẋi

]
where (A,B) is a stabilizable pair, and ui is the coupling given by

ui = −
[
C1 C2

] n∑
k=1

a+
ik

([
xk

ẋk

]
−

[
xi

ẋi

] )
.

Then the system matrix is given by

C = I2n ⊗
[
0 In
0 −A

]
− L+ ⊗

[
0 0

−C1 −C2

]
.

It is easy to check that the kernel of C contains the vectors of the form
1⊗ [v 0]⊤ and the system is again invariant to translations.

In the presence of exogenous disturbances wi of the agents, one would
like to make the norm of the mapping ȳ 7→ yi−yj smaller than some given
tolerance γ, where ȳ = [ȳ1 . . . ȳn].

Typical choices for norms are H2 and H∞, as both norms measure
the impact of exogenous disturbances given in the form of a stationary
stochastic process. To be more precise, the H2 norm can be interpreted
as the output variance for disturbances described by a white noise, while
the H∞ norm measures the worst-case effect a disturbance can make on
the system, see [19]. In this setting we talk about H2/H∞almost output
synchronisation.

If the underlying graph is undirected and connected, then one can
transform the system, without loss of information, to a system with stable
system matrix. Indeed, then L+ = 1

2
L is symmetric and 1 spans the kernel

of L. Let the matrix Y be such that its columns span the subspace {1}⊥
and such that Y ⊤Y = I. If we define Z = Y ⊗ I then the substitution
x = Zx′ defines a reduced system with a stable system matrix. From the
solution of the reduced system one can recover the state of the original
system up to translation invariance.

In the case of a directed graph G, the situation is more complicated. In
general, the vector 1 is only going to be a left eigenvector corresponding to
the eigenvalue zero. For example, the in-degree Laplacian of the following
simple digraph

12 3

has (algebraic and geometric) multiplicity 2. Hence, a reduction similar
to the one described for undirected graphs is not possible as we would
lose too much information. Moreover, the corresponding DSN will not
have the property of output synchronisation. This can be easily seen by
investigating a network without internal dynamics. The solution of the
corresponding ODE is given by x(t) = e−L+t where

L+ =

 2 0 0
−1 0 0
−1 0 0

 ,
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and one obtains |x2(t) − x1(t)| → ∞ as t → ∞ if x2(0) ̸= 0. The issue
with this system is that both "leader" vertices 2 and 3 are influencing
the "follower" vertex 1. It is clear that such couplings will always lead
to pathological systems. So the relevant DSNs are those where the graph
G is a directed forest, i.e. a union of directed trees (subgraphs of the
graph G in which there exists a unique path from the root vertex to
each node in this subgraph). Obviously, this means that it is sufficient to
analyse graphs which contain a spanning directed tree and indeed this is
a standard assumption in the literature.

To quantitatively analyse the output synchronisation property, one
can ask the following question: if one is able to disturb/bolster merely
one vertex in order to maximally disturb/bolster the entire system, which
vertex to choose? This question is obviously related to the almost output
synchronisation property, and in this way one can find an ordering of
vertices according to their sensitivity to the external disturbances. In the
case of undirected graphs with double-integrators in the vertices and H∞
norm, this can be efficiently calculated as shown in [52]. Similar analysis
can be made for general systems of identical linear agents.

5.2 Spectral network identification
Network identification with few measurements (see Section 2.5) can be
tackled through spectral methods. On the one hand, it is well-known
from spectral graph theory that the eigenvalues of Laplacian matrices
L±, see (8), (hereafter called Laplacian eigenvalues) provide meaningful
information on the topological structure of the graph, such as the mean
vertex degree [14]. Moreover, changes in the spectrum of the Laplacian
matrix reveal changes in the graph structure, and communities can also be
inferred from the Laplacian eigenvectors. On the other hand, the spectrum
of the so-called Koopman generator1

AG : D(AG) → F , AGf = F̄G · ∇f,

where F is a Banach space and F̄G is a vector field describing an ODE over
a graph G, can be estimated from data generated by the dynamics (see e.g.
the Dynamic Mode Decomposition (DMD) method [65]) and measured at
a few vertices (possibly one). Therefore, providing that the Laplacian
spectrum can be retrieved from the Koopman operator spectrum, the
global structure of the graph can be inferred through local measurements
of the dynamics.

In other words, network identification with a few measurements is
equivalent to the spectral network identification problem, defined as fol-
lows. Considering the set of all graphs G with a fixed number of vertices,
we aim at studying the existence of a correspondence between the set
SA of point spectra, Spp(AG) of the Koopman generators AG, and the

1In well-chosen spaces (depending on the dynamics), the operator AG is the infinitesimal
generator of the strongly continuous semigroup of Koopman operators (Kt)t≥0 : F → F
defined by the composition (Kt)f(·) = f ◦ φ(t, ·) where φ : R+ × X → X is the flow map
generated by the dynamics [11, 37].
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set SL+ of spectra Sp(L+) of the in-degree Laplacian matrix L+ of the
graphs G.

We now focus on the specific DSN (13). The Jacobian matrix J ∈
Rnp×np of the vector field at the origin is given by

J = In ⊗B − L+ ⊗ C

where In identity matrix, see (11), B = JF ∈ Rp×p is the Jacobian matrix
of F , and C = G(0)JH(0)JQ(0), with JH ∈ Rr×q and JQ ∈ Rq×p the
Jacobian matrices of H and Q, respectively. We assume that J has non-
resonant eigenvalues µj (j = 1, . . . , np) with ℜ{µj} < 0, so that the origin
is an asymptotically stable synchronised equilibrium. In this case, the
point spectrum of the Koopman generator A defined in the Hardy space
F = H2(Dnp), where Dnp ⊂ Cnp is a polydisk of radius small enough, is
given by

Spp(A) =

{
n∑

j=1

αjµj , α ∈ Nn

}
⊃ Sp(J).

It follows that there is a one-to-one correspondence between the set of
spectra SA and the set SJ of spectra Sp(J), so that the problem boils
down to an algebraic characterisation of the correspondence between the
sets SJ and SL+ . We have the following result based on the spectral
moments of the matrix C [29].

Proposition 1. Consider two in-degree Laplacian operators L+
1 , L+

2

associated with two digraphs G1, G1. If tr(Ck) ̸= 0 for all k ∈ {1, . . . , n},
then there is a one-to-one mapping between SJ and SL+ , that is

Sp(J1) = Sp(J2) ⇔ Sp(L+
1 ) = Sp(L+

2 )

with J1 = In ⊗B − L+
1 ⊗B and J2 = In ⊗B − L+

2 ⊗ C.

Moreover, the spectrum of J can be easily expressed in terms of Lapla-
cian eigenvalues.

Lemma 1. The spectrum of J = In ⊗B − L+ ⊗ C is given by

Sp(J) =
⋃

λ∈Sp(L+)

Sp(B − λC).

Proof. Let P be the matrix constructed with (generalised) eigenvectors
of L+, such that P−1L+P has a Jordan form. Then the matrix J̃ =
(P⊗In)

−1J(P⊗In) = diag(M1, . . . ,Mr) is block-diagonal, with the blocks
Mj = Irank(Jλ) ⊗B + Jλ ⊗C, where Jλ is a Jordan block associated with
an eigenvalue λ ∈ Sp(L+), and rank(Jλ) is its rank. It is clear that the
matrices Mj are block triangular, with diagonal blocks B + λC. This
implies that Sp(Mj) = Sp(B + λC) and the result follows from the fact
that Sp(J) = Sp(J̃) = ∪r

j=1Sp(Mj).

It follows from Lemma 1 that the Laplacian eigenvalues λ can be ob-
tained from the eigenvalues µ ∈ Sp(J) ⊂ Spp(A) by solving the gener-
alised eigenvalue problem

(B − µIn)v = λCv.
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For a given eigenvalue µ ∈ Sp(J), there are as many solutions λ as the rank
of C, but only one solution is a Laplacian eigenvalue. Specific techniques
have to be developed to circumvent this issue (see [29] for more details).

When the matrix C has rank one (e.g. in the case r = 1 or q = 1), we
have the following additional result [48].

Proposition 2. Suppose that rank(C) = 1 so that there exists v, w ∈ Rm

with C = vwT . If rank([v,Bv, . . . , Bp−1v]) = rank([w,BTw, . . . , (Bp−1)Tw]) =
p, then there is a one-to-one mapping between SJ and SL+ . Moreover,

Sp(L) = {0} ∪
{
1/wT (B − µIn)

−1v, µ ∈ Sp(J) \ Sp(B)
}
.

6 PDEs on metric graphs

The notion of metric graph was introduced in Subsection 3.2. In the
current section we are going to investigate dynamic processes defined on
this kind of structures.

6.1 Hyperbolic equation on networks
The simplest hyperbolic equation models the advection or transport pro-
cess on an interval. We consider it along the arcs of a metric graph G.
For simplicity, we rescale all edge lengths to 1. On the edge ej , which we
parametrise as [0, 1], we take the equation

∂

∂t
uj(t, s) = cj ·

∂

∂s
uj(t, s), t > 0, s ∈ (0, 1), j ∈ J, (16)

where the velocity coefficients are cj > 0 for all j ∈ J and the flow
is assumed to move in the direction opposite to the parametrisation, i.e.,
from endpoint 1 to endpoint 0. Let us remark that one could also consider
space- or time-variable coefficients cj , as was done in [21, 24, 47] or [10],
respectively. Denote

C := diag(cj).

For the well-posedness of our problem, we should impose boundary con-
ditions at the right endpoint of every edge, i.e., at 1. We shall assume
that the weights wj on the edges of the underlying weighted combinatorial
digraph G (see Subsection 3.1) satisfy

0 < wj ≤ 1 and
∑

ej∈E−
vi

wj = 1, (17)

for all j ∈ J and vi ∈ V . In particular, for the weighted outgoing degree
matrix, we have D−

w = In. The standard boundary conditions for our
problem can be written as

cjuj(t, 1) = wj

[
Φ+Cu(t, 0)

]
i

(18)

for every edge ej ∈ E−
vi . We assume without loss of generality that G has

no sinks or sources (see also [4, Thm. 2.1]). Here and further on,

u(t, s) = (uj(t, s))j∈J
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denotes the vector of function(value)s on the edges.
Note, that (17) guarantees the conservation of mass in every vertex

and that conditions (17)–(18) imply so-called Kirchhoff’s law that can
be formulated in terms of incidence matrices as

Φ−Cu(t, 1) = Φ+Cu(t, 0). (19)

The following result was proved in [40, Prop. 2.5] and [7, Prop. 18.15].

Proposition 3. Let G be a finite connected digraph with no sinks or
sources, given by the incidence matrices Φ− and Φ+, and consider the
system on the arch of the corresponding metric graph G,

∂
∂t

uj(t, s) = cj · ∂
∂s

uj(t, s), t > 0, s ∈ (0, 1),
ϕ−
ijcjuj(t, 1) = wij

∑
k∈J ϕ+

ikckuk(t, 0), t > 0,

uj(0, s) = fj(s), s ∈ [0, 1] ,
(20)

with coefficients cj > 0 and wj satisfying (17), for j ∈ J , i ∈ I. Then the
problem is well-posed on the space L1

(
[0, 1],Cm

)
. The solution to (20) is

given by
uf (t) = T (t)f, t ≥ 0,

where (T (t))t≥0 is a C0-semigroup on L1
(
[0, 1],Cm

)
and uf (t) = uf (t, ·)

denotes the vector of solution functions on the edges with initial value f .

Remark 1. The same result was in [47, Prop. 2.3] and [21, Cor. 2.19]
obtained also for non-constant coefficients cj.

Moreover, problem (20) is well-posed also on Lp
(
[0, 1],Cm

)
for 1 ≤

p < +∞, see [21, Cor. 2.19] and [24, Prop. 3.1].

The generator of the semigroup (T (t))t≥0 in the above proposition is
the operator defined as

AF := C · d

ds
, D (AF ) :=

{
f ∈ W1,1([0, 1],Cm)

: f(1) = B+
Cf(0)

}
(21)

(for the condition of the domain see [7, Prop. 18.2]), where where B+
C is

the weighted adjacency matrix of the line graph obtained as

B+
C := C−1B+

wC.

Under the assumption on the weights (17), the matrix B+
w is column

stochastic. This turns out to be important when studying further quali-
tative properties of the solutions. Many properties of the solution semi-
group are given by the structure of the graph. For example, the semigroup
(T (t))t≥0 is irreducible if and only if the oriented graph G is strongly con-
nected (cf. [7, Prop. 18.16] and [47, Lem. 4.5]).

The spectrum of the operator (AF , D(AF )) can be characterized using
the weighted adjacency matrix A+

w, the weighted adjacency matrix of the
line graph B+

C or, equivalently, the advection matrix N+
w as follows. We

start by adjusting the nonzero coefficients of these matrices. Define

Eλ(s) := diag
(
e

λ
ck

s
)
, s ∈ R, (22)
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and let

A+
λ := Φ+Eλ(−1)

(
Φ−

w

)⊤
, B+

C,λ := Eλ(−1)B+
C , and N+

λ := I −A+
λ .

Notice that A+
0 = A+

w, B+
C,0 = B+

C , and N+
0 = N+

w (recall that D−
w = In

by (17)).
Theorem 1. Let (AF , D(AF )) be the operator given in (21). Then

λ ∈ σ(AF ) = σp(AF ) ⇐⇒ 1 ∈ σ(A+
λ ) ⇐⇒ 1 ∈ σ(B+

C,λ) ⇐⇒ 0 ∈ σ(N+
λ ).

Moreover, g is an eigenfunction of AF corresponding to the eigenvalue λ if
and only if g(s) = Eλ(s)d where d is an eigenvector of BC,λ corresponding
to the eigenvalue 1.

Proof. The equalities about the spectra follow from the explicit formula of
the resolvent R(λ,AF ) which is positive and compact, see [7, Cor. 18.13].
Observe that the eigenspace ker(λ − AF ) is spanned by the functions
of the form g(·) = Eλ(·)d for some d ∈ CJ such that g(1) = B+

Cg(0).
The given correspondence between eigenvectors can be derived by an easy
calculation.

The following condition plays a crucial role in the long-term behaviour
of the solutions.

There exists 0 < d ∈ R such that d ·
(

1

cj1
+ · · ·+ 1

cjk

)
∈ N

for all directed cycles ej1 , . . . , ejk in G.

(23)

If (23) is satisfied, the boundary spectrum of AF is cyclic (see [7, Prop. 18.1b]).
Moreover, in this case also a so-called circular spectral mapping theorem
holds for the spectrum of the generator (AF , D(AF )) and the semigroup
(T (t))t≥0, see [40, Prop. 3.8] and [47, Prop. 4.10]. This states the follow-
ing:

Γ · etσ(AF ) = Γ · σ(T (t)) \ {0} for each t ≥ 0,

where Γ denotes the unit circle.
From the spectral properties of the generator we can obtain the asymp-

totic behavior of the solutions of the problem (20), see [40, Thm. 4.10] and
[7, Thm. 18.19]. We call a subgraph Gr of G a terminal strong component
if it is strongly connected and there are no outgoing edges of Gr, see [5,
page 17].
Theorem 2. Let G be a connected graph with terminal strong components
G1, . . . , Gℓ and (T (t))t≥0 the semigroup associated with the transport
problem (20). Then for any initial value f ∈ L1

(
[0, 1],Cm

)
the (mild)

solution of system (20) can be written uniquely in the form of a sum

uf (t) = T (t)f = Tn(t)f + Ts(t)f + Tr1(t)f + · · ·+ Trℓ(t)f,

:= un,f (t) + us,f (t) + ur1,f (t) + · · ·+ urℓ,f (t), t ≥ 0,

where Tn(•), Ts(•), Tr1(•), . . . , Trℓ(•) are strongly continuous semigroups
on the T (t)-invariant subspaces Xn, Xs, Xr1 , · · · , Xrℓ , respectively, with

L1([0, 1],Cm)
= Xn ⊕Xs ⊕Xr1 ⊕ · · · ⊕Xrℓ ,

and the following holds.
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1. There exists t0 > 0 such that un,f (t) = 0 for all t ≥ t0.

2. The solution on Xs is stable: lim
t→+∞

us,f (t) = 0.

3. If for some 1 ≤ i ≤ ℓ the graph Gi satisfies Condition (23) then
for the period

τi =
1

d
gcd

{
d ·

(
1

cj1
+ · · ·+ 1

cjk

)
: ej1 , . . . , ejk is a directed cycle in Gi

}
,

the solution on Xri behaves periodically:

uri,f (t+ τi) = uri,f (t), t ∈ R.

4. If for some 1 ≤ i ≤ ℓ graph Gi does not satisfy Condition (23), then
for the solution on Xri it holds

lim
t→+∞

uri,f (t) = PXri
f,

where PXri
denotes the projection onto the one-dimensional subspace

Xri .

Therefore, the structure of the discrete graph strongly influences the
long-term behavior of the solutions to the given problem.

Let us also note that one can generalize the problem and consider a
system of hyperbolic equations on each graph edge. Such problems were
studied in [23] in the L2-setting where the existence of the solutions was
obtained under appropriate assumptions for the (not necessarily hermi-
tian) coefficient matrices and admissible boundary conditions.

We further mention that stabilization results of some hyperbolic sys-
tems on graphs are available in [54, 32], where exponential or polynomial
energy decay is obtained.

Another class of problem (20) generalizations’ is transport on time-
varying metric graphs. Depending on the types of graph modifications
one can mention: [8] where time-dependent weights are considered, [10]
with both weights and velocities of flow differing in time, and finally [46]
where not only coefficients but also the structure itself can be modified.

6.2 Virus variant modeling in fragmented envi-
ronment
Let us now return to the question of how to describe the evolution of
variants of the virus in the diverse environment, presented in motivating
example 2.7.

We consider P patches that can be interpreted either as cities or larger
areas divided by natural barriers such as rivers, mountain ranges etc.,
and enumerated by Jp = {1, . . . , P}. In each patch there are Q − 1
variants of a virus, having its specific virus infection average duration tq,
q ∈ Jq = {1, . . . , Q − 1}, and uncolonised persons with reference time tQ
when their status of colonisation remain unchanged. In order to structure
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this topography into the metric graph, consider two kinds of edges ej ,
j ∈ JV or j ∈ JnV J = JV ∪ JnV , #J = m, where

JV := {(p− 1)Q+ q : p ∈ Jp, q ∈ Jq},
JnV := {pQ : p ∈ Jp}.

In particular, the flow along the edge e(p−1)Q+q, for p ∈ Jp, q ∈ Jq,
describes the evolution of infection of q-th virus in p-th patch from the mo-
ment of contamination at e(p−1)Q+q(1) to patients’ recovery in e(p−1)Q+q(0).
The evolution of the population of uncolonised persons in p-th patch, in
time, is related with the flow on the edge epQ, p ∈ Jp.

The velocities of flow, for above types of edges, respectively for q ∈ Jq

and p ∈ Jp, are given by

c(p−1)Q+q = t−1
q , cpQ = t−1

Q .

Due to the inaccuracy of parameter estimation, we can assume without
loss of generality that all tj ∈ Q+, j ∈ J and consequently (23) always
holds.

The mobility of modeled society as well as virus mutations are de-
scribed by the entries of B = (bij)i,j∈J that inform about the fraction of
people changing their status of colonisation in different patches. Namely,
entry b(p−1)Q+q1,(p−1)Q+q2 , p ∈ Jp, q1, q2 ∈ Jq gives the intensity of
mutation from q2-th variant to q1-th variant of virus in patch p, while
b(p1−1)Q+q,(p2−1)Q+q, p1, p2 ∈ Jp, q ∈ Jq the intensity of transfer of pa-
tients colonised by q-th variant of a virus from patch p2 to p1. Furthermore
b(p−1)Q+q,(p−1)Q+q, p ∈ Jp, q ∈ Jq gives the intensity of infections that last
longer then average time tq in patch p. We assume additionally that

b(p1−1)Q+q1,(p2−1)Q+q2 = 0, for p1 ̸= p2, q1 ̸= q2, p1, p2 ∈ Jp, q1, q2 ∈ Jq

hence the mutations appear only in patches.
Entry b(p−1)Q+q,pQ, p ∈ Jp, q ∈ Jq, informs about the intensity of

colonisation of uncolonised persons by q-th variant of a virus in patch p.
We assume that

b(p1−1)Q+q,p2Q = 0 for p1 ̸= p2, p1, p2 ∈ Jp, q ∈ Jq

hence the colonisation appears in the patch only.
Analogously, bpQ,Q(p−1)+q, p ∈ Jp, q ∈ Jq is related to the intensity of

recovery of infected persons colonised by q-th variant of a virus in patch
p. Additionally,

bp2Q,Q(p1−1)+q = 0 for p1 ̸= p2, p1, p2 ∈ Jp, q ∈ Jq

hence the recovery appears in the patch.
Finally, bp1Q,p2Q, p1, p2 ∈ Jp is the intensity of transfer of uncolonised

persons from p2-nd patch to p1-st patch.
Now based on Thm. 2 we estimate the influence of a particular variant

of a virus in the considered patch. If an edge e(p−1)Q+q, p ∈ Jp, q ∈
Jq does not belong to any terminal strong component Gr we have two
possible scenarios. Either q-th variant of a virus will extinct in p patch in
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a predictable time horizon. For that, the (p − 1)Q + q-th coordinate has
to vanish everywhere except from Xs subspace. Otherwise variant q will
be vanishing gradually from patch p and its influence on the population
will be negligible. Consequently, in both presented cases variant q should
not be taken into account for vaccination policies in patch p.

Now, let us consider an edge e(p−1)Q+q, p ∈ Jp, q ∈ Jq that belongs to
a terminal strong component Gr. We denote edges of Gr by

Er := {e(p−1)Q+q : p ∈ Jp
r, q ∈ Jq

r(p)} ∪ {epQ : p ∈ Jp
r′},

Jp
r, Jp

r′ ⊂ Jp, Jq(p) ⊂ Jq. By the definition, there is only one terminal
strong component that e(p−1)Q+q belongs to but coordinate (p− 1)Q+ q
may not vanish on subspaces Xn, Xs. The subgraph Gr identifies pr :=
#Jp

r connected patches in which qr := #Qr, Qr := {q ∈ Jq
r(p) : p ∈

Jp
r}, variants of virus play a role. In the long therm flow of a virus

between those patches is periodic hence one can compute the average
number of patients colonised by q-th variant of a virus in r-th terminal
strong component. Consider initial distribution of patients in patches f
and define a mean Πr : L1

(
[0, 1],Cm

)
→ Rm

Πrf =
1

τr

∫ τr

0

∫ 1

0

(Tr(s)f)(x)dxds, for any t ≥ 0.

One can compute the proportion of patients being colonised by a par-
ticular variant of a virus in the patch. For fixed patch p consider strong
components Gri , i = 1, . . . , ℓ, such that for each of them there exist an
edge e(p−1)Q+q, q ∈ Jri

q , i = 1, . . . , ℓ. The vector of averaged prevalence
Prev(p) = (Prevq(p))q∈Jq in p-th patch is given by

Prevq(p) :=
(
∑ℓ

i=1 Π
rif) e(p−1)Q+q

(
∑ℓ

i=1 Π
rif)1

, q ∈ Jq,

where 1 is defined in (11) and e(p−1)Q+q = (0, . . . , 0, 1, 0 . . . , 0)T ∈ Rm.
Based on this the prevalence Prev(p) medical authorities can make appro-
priate assignment of vaccine in the patch p.

6.3 Laplace equation on graphs
We shall now move to second order problems and consider diffusion process
on an interval along the arcs of a metric graph G. We adopt the following
notation for function uj , defined on the edge ej , parameterized on [0, 1]:

uj(vi) =

{
uj(0) if vi

ej→,

uj(1) if
ej→ vi.

d

ds
uj(vi) =

{
d
ds
uj(0) if vi

ej→,
d
ds
uj(1) if

ej→ vi,

if, in the latter case, the (one-sided) derivatives exist. Let us first re-
call the definition of the (continuous) Laplacian ∆G on a metric graph G
with Kirchhoff boundary condition at the vertices. In the following, C(G)
denotes the space of continuous functions on the edges being continuous
across the vertices, that is,

C(G) := {u = (uj)j∈J ∈
∏
j∈J

C[0, 1] : uj(vi) = uk(vi) if ϕijϕik ̸= 0},
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where
Φ = (ϕij)i∈I,j∈J = Φ+ − Φ−

denotes the incidence matrix of the underlying graph G. Let

D(∆G) := {u ∈ C(G) : uj ∈ H2(0, 1), ∀j ∈ J,
∑
l∈J

ϕil
d

ds
ul(vi) = 0,∀i ∈ I}

(24)
and

∆Gu :=

(
− d2

ds2
uj

)
j∈J

. (25)

It is not difficult to show that ∆G is a non-negative self-adjoint operator
with a compact resolvent.

In the same spirit as the result from Theorem 1 from Subsection 6.1, let
us recall an old result from [66, 53] concerning the relationship between
the spectrum of the operator ∆G when the lengths of the edges are all
equal to 1 with the eigenvalues of a matrix. Let

Ã := D−1A

which is also called the transition matrix of G, where A is the adjacency
matrix of G, see (4), and D is the degree matrix of G, see (5).

Theorem 3. Assume that the lengths of the edges of the metric graph G
are all equal to 1. Then the spectrum σ(∆G) consists only of eigenvalues
and is given by

σ(∆G) = S1 ∪ S2,

where
S1 = {π2k2 : k ∈ N},

the multiplicity of 0 is 1, while the multiplicity of π2k2 depends on the fact
of whether G is bipartite or not. Furthermore,

S2 = {λ ∈ (0,∞) : cos
√
λ ∈ σ(Ã) ∩ (−1, 1)}.

Let us notice that the main idea for the characterization of the family
S2 is to look for an eigenvector u in the form

uj(s) =
uj(0) sin(

√
λ(1− s)) + uj(1) sin(

√
λs)

sin
√
λ

, s ∈ [0, 1],

which is meaningful since sin
√
λ ̸= 0. By the continuity condition at the

vertices, the remaining unknowns are the values of u at the vertices and
we easily check that the Kirchhoff conditions at the nodes lead to

ÃX = cos
√
λX,

where
X = (u(v))v∈V (26)

denotes the vertex values of u which are well-defined for a function u ∈
C(G).

This method gives also an explicit relationship between the eigenvec-
tor u of ∆G associated with λ and the eigenvector X of Ã associated with
cos

√
λ.

25



In the following, we consider a diffusion problem on G of the form
∂
∂t
uj(t, s) = ∂2

∂s2
uj(t, s), t > 0, s ∈ (0, 1),

uj(vi) = uk(vi) if ϕijϕik ̸= 0,
0 =

∑
l∈J ϕil

d
ds
ul(t, vi), t > 0,

uj(0, s) = fj(s), s ∈ [0, 1] ,

(27)

where j, k ∈ J , i ∈ I. It can be easily seen that the above system is
equivalent to the abstract Cauchy problem{

d
dt
u(t) = −∆p,Gu,

u(0) = f,
(28)

with state space Lp
(
[0, 1],Cm

)
, where

D(∆p,G) = {u ∈ C(G) : uj ∈ W 2,p(0, 1), ∀j ∈ J
and

∑
l∈J ϕil

d
ds
ul(vi) = 0, ∀i ∈ I

} (29)

and

∆p,Gu =

(
− d2

ds2
uj

)
j∈J

. (30)

In [25, Thm. 3.6], the following result is shown, see also [20, Cor. 2.13]
and [24, Prop. 3.3].
Theorem 4. The first-order problem (28) is well-posed on the space
Lp

(
[0, 1],Cm

)
for 1 ≤ p < +∞, i.e., for all initial data f ∈ Lp

(
[0, 1],Cm

)
problem (28) admits a unique mild solution that continuously depends on
the initial data. The solutions on the appropriate spaces have the form

up,f (t) = Tp(t)f, t ≥ 0, (31)

where (Tp(t))t≥0 is the C0-semigroup generated by −∆p,G on Lp
(
[0, 1],Cm

)
.

By [25, Cor. 5.2], we can also describe the asymptotic behavior of the
solutions to (28).
Theorem 5. Let f ∈ Lp

(
[0, 1],Cm

)
, 1 ≤ p < +∞, be arbitrary. For the

solutions of the problem (28) with initial value f the following hold.

1. The limit lim
t→+∞

up,f (t) = Pf exists.

2. P is the strictly positive projection onto the one-dimensional sub-
space of Lp

(
[0, 1],Cm

)
spanned by the constant function 1, which is

the kernel of ∆p,G.

3. For every ε > 0 there exists M > 0 such that

∥up,f (t)− Pf∥ ≤ Meε+λ2t,

where λ2 is the largest nonzero eigenvalue of ∆G.

In [39] we perturbed the Kirchhoff boundary condition of the diffusion
problem (27) in each vertex by noise, that is, we considered the system

∂
∂t
uj(t, s) = ∂2

∂s2
uj(t, s), t > 0, s ∈ (0, 1),

uj(vi) = uk(vi) if ϕijϕik ̸= 0,

β̇vi(t) =
∑

l∈J ϕil
d
ds
ul(t, vi), t ∈ (0, T ],

uj(0, s) = fj(s), s ∈ (0, 1) ,

(32)
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where j, k ∈ J , i ∈ I and

(β(t))t∈[0,T ] =
(
(βvi(t))t∈[0,T ]

)
i∈I

,

is an Rn-valued Brownian motion (Wiener process) on an appropriate
complete probability space. For an initial function f ∈ L2

(
[0, 1],Cm

)
, the

mild solution of problem (32) has the form

ũf (t) = u2,f (t) +

∫ t

0

(λ+∆G)S(t− s)Dλ dβ(s), t ≥ 0, (33)

where u2,f is the solution of the diffusion problem on L2 from (31), λ > 0
is arbitrary, and Dλ is the so-called Dirichlet-operator. In [39, Thm. 3.8]
we showed the following result.
Theorem 6. Let (fk) be the complete orthonormal system consisting of
the eigenfunctions of ∆G in L2

(
[0, 1],Cm

)
, and assume that there exists a

positive constant c such that

sup{|fk(v)| : v ∈ V, k ∈ N} ≤ c.

Then, for α < 1
4

the mild solution ũf has a continuous version in the
fractional domain space D (∆α

G).

7 PDEs on embedded metric graphs

7.1 Traffic analysis
An example of application of metric graphs that are embedded into the
plane are traffic models, in particular macroscopic ones, which are usually
based on partial differential equations describing the evolution of aggre-
gated values such as traffic density, traffic flow and average speed. In our
work, we have focused on one of the popular macroscopic traffic simula-
tion models, the Payne-Whitham model [63, 68], originally designed for
modelling highway traffic on straight road segments. Our model is derived
from the one in [38], the main novelty being that we considered that some
of the road segments are controlled by traffic signals. In particular, we
focused on how drivers react to the change of state of a traffic light and
improved the model from [38] by taking into account a speed reduction
when cars enter a junction and turn left or right.

The Payne-Whitham model on a single edge (i.e. road segment) con-
sists of a conservation law for density, together with a characterisation
of the instantaneous variation of speed based on the behaviour of drivers
in terms of their adaptation to the current density and also their abil-
ity to anticipate the changes in density upstream. The equations are the
following:

∂ρ(t, x)

∂t
+

∂(v(t, x)ρ(t, x))

∂x
= 0 (34)

∂v(t, x)

∂t
+ v(t, x)

∂(v(t, x))

∂x
=

V (ρ(t, x))− v(t, x)

ν
− C

ρ(t, x)

∂ρ(t, x)

∂x
,

(35)
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where the function V represents the ideal relationship between density
and speed on a road segment (called the “fundamental diagram of traffic
flow”). In our work, it has the following form:

V (ρ) = vmax exp

(
−1

a

(
ρ

ρcr

)a)
, (36)

where vmax (the maximum speed), ρcr (the density where the speed starts
to decrease considerably) and a (characterising the steepness of this de-
crease) are positive parameters inherent to every edge of the road network
(see [12, Section 2.1] for more details). The meaning of the conservation
law (34) is that the density of cars propagates with the speed given by
v(t, x). Similarly, the speed also propagates with the traffic flow, but its
variation also depends on other factors given on the right-hand side (RHS)
of (35). In particular, the first term on the RHS of (35) drives the speed
towards the ideal speed given by the fundamental diagram (36). The
strength of this adaptive behaviour is controlled by the parameter ν > 0,
which must be calibrated to describe the real-world situation of interest.
The second term on the RHS of (35) represents the ability of drivers to
anticipate the traffic conditions ahead and adapt their speed to the change
in density. The strength of this ability to anticipate is described by the
parameter C > 0.

Next, we use an explicit finite difference scheme to compute the density
and speed at the next time step k + 1 with respect to the current state
(at time step k) for each road e uniformly discretised into Ne segments
indexed by i ∈ {1, 2, . . . , Ne} (where vehicles travel from the segment i−1
directly to the segment i):

ρ(k + 1, i)− ρ(k, i)

δt
+

ρ(k, i)v(k, i)− ρ(k, i− 1)v(k, i− 1)

δx
= 0; (37)

v(k + 1, i)− v(k, i)

δt
+

v(k, i)2 − v(k, i− 1)2

2δx

=
V (ρ(k, i+ 1))− v(k, i)

ν
− C

ρ(k, i) + χ

ρ(k, i+ 1)− ρ(k, i)

δx
.

(38)

Here δt and δx are the discretisation grid sizes and χ > 0 is a parameter
used to avoid blow-ups in the last term of (38). It may also need to be
calibrated to reflect the local situation. We refer to [12, Section 3] for
more details about discretisation technique and the stability conditions
for (37)-(38).

7.1.1 Coupling at intersections

In the case of a road network, the number of lanes on each street might
differ and the cars need to adapt to the lane number change by modifying
the speed. Therefore, the network version of the Payne-Whitham model
should take into account the number of lanes ℓ(e) corresponding to each
edge e of the graph. The next step is to write the equation (37) in terms
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e1

e3

e2
e4

ρe1
(1)

ρe3
(Ne3

)

ρe2(Ne2 +1) ρe4(0)

Figure 3: An intersection with the virtual initial and final densities (blue values
are virtual).

of the traffic flux (i.e. the number of cars passing on all lanes in each
instant of time):

q(k, i) = ρ(k, i)v(k, i)ℓ(e). (39)

where ρ(k, i) is the density per lane averaged over all lanes. Therefore,
the equation (37) can be written as:

ρ(k + 1, i)− ρ(k, i)

δt
+

1

ℓ(e)

q(k, i)− q(k, i− 1)

δx
= 0. (40)

Further, it can be observed that some quantities needed to perform the
iteration in (40) and (38) are not available from the previous time step.
Namely, in order to compute the density and speed for both ends of a
road segment e (parameterised by {1, 2, . . . , Ne}), we need some virtual
values for q(k, 0), ρ(k,Ne + 1) and v(k, 0).

In the case of no traffic lights, we follow the ideas in [38, Section II.D],
where these virtual values are defined as weighted sums of the traffic values
on the other road segments adjacent to this intersection. We illustrate
these calculations for the particular case of the intersection in Figure 3:

qe4(k, 0) =

4∑
i=1

qei(k,Nei) ·
ω(ei, e4)∑4
j=1 ω(ei, ej)

; (41)

ve4(k, 0) =
1

qe,4(k, 0)

4∑
i=1

vei(k,Nei) · qei(k,Nei) ·
ω(ei, e4)∑4
j=1 ω(ei, ej)

. (42)

A similar approach is employed to calculate ρe2(k,Ne2+1) (see [12, Section
4.1]). The turning weights ω(ei, ej) represent the number of cars that
choose to continue their trip on road ej , after entering that particular
intersection from road ei. These weights are determined by processing
real-world traffic data.
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7.1.2 Limiting the turning speed

Our first improvement to the algorithm in [38] concerns the maximum
speed of cars changing direction at an intersection. We have limited the
virtual initial speed v(k, 0) according to the speed at the other edges in
the intersection and the geometry of the intersection. We illustrate the
procedure using the notation in Figure 3:

vlime4 (k, 0) =
1

qe4(k, 0)

4∑
i=1

vmax
ei

(1− cos(êi, e4))

2
qei(k,Nei) ·

ω(ei, e4)∑4
j=1 ω(ei, ej)

,

(43)

where vmax
ei is the speed at which cars normally travel when the road is

empty. See [12, Section 4.2] for more details about this way of limiting
speed at intersections.

7.1.3 Adding traffic lights

Our major contribution to the traffic simulation model is introducing traf-
fic signal control for some intersections. The modifications imply both the
speed values at the end of the roads controlled by traffic lights and the
weighted sums (41)-(43). If the signal is red, the final speed v(Ne) of the
edge e is set to 0 and e is not taken as an input in the weighted sums for
the virtual density and speed of other edges (i.e., we set ω(e, ei) = 0 for
each road ei).

7.2 Approximating PDEs on R2 with equations
on embedded graphs
Another application of embedded graphs lies in their capability to ap-
proximate solutions of PDEs in a two-dimensional space using a coupled
system of one-dimensional equations on a grid contained within R2. In
this context, we highlight the results in [9] on the Dirichlet problem in the
square S = (0, 1)× (0, 1){

−∆u = f, on S;
u = 0, on ∂S,

(44)

where f is a continuous function on S.
In order to approximate the solution of the above problem, we consider

the traditional equidistant grid in the square, but now seen as a metric
graph G. Namely, for any N a positive integer (N ≥ 3), we set the grid
width h = 1/N and the digraph Gh = (Vh, Eh,Φ

±
h ,Wh), defined as follows

(see Figure 4):
The set of vertices

Vh :=
{
vi =

(
v1i , v

2
i

)
: i ∈ Ih

}
:= {(kh, jh) : k, j ∈ N ∩ [0, N ] not both belonging to {0, N}}
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gets divided into two components, the set of internal and boundary ver-
tices, respectively:

V ext
h :=

{
v ∈ Vh : v1 ∈ {0, N} or v2 ∈ {0, N}

}
;

V int
h := Vh \ V ext

h .

The edges connect every two adjacent (in the sense of coordinate number)
vertices that are not both exterior nodes, namely

Eh :=
{
ej : j ∈ Jh

}
:=

{
(vi, vk) :

∣∣v1i − v1k
∣∣+ ∣∣v2i − v2k

∣∣ = 1, and vi or vk ∈ V int
h

}
.

x

y

h

h

1

1

Figure 4: The discretisation of the square S ⊂ R2. The edges of the graph Gh

are coloured in blue.

In order to obtain a metric graph Gh we add the orientation to Gh

which agrees with the positive direction of each axis (see Figure 4). Fur-
thermore, we assume that digraph is unweighted, hence Wh is an identity
matrix. This allows us to consider the Dirichlet problem on Gh corre-
sponding to the Kirchhoff Laplacian ∆Gh defined in Subsection 6.3, with
Dirichlet boundary conditions at the exterior vertices that are now part
of the operator domain:

D (∆Gh) =
{
u = (uj)j∈Jh ∈ C(Gh) : uj ∈ H2(ej), ∀ej ∈ Eh,∑

j∈Jh

(
ϕ+
h,ij − ϕ−

h,ij

)
u′
j (vi) = 0, ∀vi ∈ V int

h and

u(vi) = 0, ∀vi ∈ V ext
h

} (45)

With this definition, one can prove that the following elliptic equation
on the graph Gh is well-posed [9, Section 2.3]:
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∆Ghuh =
1

2
f |Gh (46)

In order to state the approximation results, we need to define the h1
h and

ℓ∞h norms on the grid Gh:

∥u∥2h1
h
:=

∑
j∈Jh

∫
ej

[
(uj)

2 + (u′
j)

2] dx;
∥u∥ℓ∞

h
:= esssup{|uh(x)| : x ∈ ej ∈ Eh}.

In these norms, one has an approximation result of order
√
h, which is the

subject of the main theorem in this section:

Theorem 7 ([9, Corollary 3.6]). Let f ∈ W 1,p(S), with p > 2, such that
f is zero at each corner of S. Then the solution u of (44) has H3(S)
regularity. Furthermore, there exists a constant C > 0 independent of h
and f such that, if uh is the solution of (46), the following error estimates
hold:

∥uh − u|Gh∥h1
h
≤ C

√
h∥u∥H3(S); (47)

∥uh − u|Gh∥ℓ∞ ≤ C
√
h∥u∥H3(S). (48)

The meaning of the aforementioned result is that the Dirichlet prob-
lem on a square in R2 can be regarded as a limit of continuous equations
on embedded networks, as the embedding progressively encompasses the
domain. For similar findings on arbitrary domains, interested readers may
refer to [9, Section 5]. Additionally, approximation results for the spec-
trum of operators on domains in R2 with the graph spectrum of embedded
networks can be found in [55] and the references therein.

8 Interdependence of dynamical network
models

In the last section we look closer at four major groups of networked models
considered in the paper; namely those based purely on structure of com-
binatorial digraphs, or on dynamics: in vertices, on edges or on embedded
edges. For all above concepts we trace both differences and similarities in
their foundations, compare mathematical tools applied and assign them
to the general mathematical field where they belong.

In order to apply the network paradigm one needs to observe a group
of objects that interact one with another. The assignment of objects into
mentioned groups may be related with their physical location, and then we
talk about the graph which is embedded into Rn space. On the other hand,
it may be based on any other common feature of the objects and then
interaction does not have to possess physical representation. Specified
interactions constitute a backbone of every networked model. In this
study we indicate in many cases the difference in the role of interaction’s
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initiator and its recipient, hence the object that structures the model is a
digraph.

Even though from mathematical perspective we are in the set theory,
the combinatorial digraph provides the information about dynamics which
is hidden in the structure, namely in the incidence matrices Φ± and in
weights of edges W . This characteristics can be described either in one
moment in time, eg. when the process is at equilibrium point, or in several
moments which allows for capturing the temporary state of a system.

In order to understand the process better one can define operators on
digraphs. They can be of several natures, either purely related to the net-
work structure (see (4) – (9)) or providing additional information ((21),
(24), (25), (29), (30)); defined in vertices (eg. (7) – (9)) or on edges
(eg. (21), (24), (25), (29), (30)) etc. The properties of operators such as
boundedness, self-adjointness, positivity, irreducibility etc. provide addi-
tional information about the phenomenon such as connectivity of groups,
symmetry or periodicity of interactions. Furthermore, one can define a
functional, called a graph measure, acting from the network either to the
subset of R, in the case of global measures (eg. reciprocity or modularity),
or to the subset of Rn/Rm, in the case of local measures (such as Finn
cycling index or pagerank). All of these notions are examined in Section
4.

Having network operators defined, one can consider both linear and
non-linear abstract Cauchy problems (ACP) generated by them, moving
smoothly from algebraic methods to pure analysis. Depending on the
type of an operator we arrive at ODE’s defined in vertices (Section 5)
or PDE’s defined on edges (Section 6). Nevertheless, the classification
is not that straightforward. If we allow for inhomogeneity of objects in
vertices, we introduce an additional variable x extending the dimension of
the vertex vi, for example into dimension one in the simplest case. Then
the functional space above the vertex can be defined and one can consider
PDEs in vertices instead of ODE’s. In this case an edge having a head in
vj and a tail in vi may, for example, inform about mass’ flow from one
point at locally one dimensional metric space in the vertex vi to another
point in another vertex vj , [2]. It can be obviously more complex taking
for instance non-local transfers, [3]. This reasoning can be easily extended
to vertices of arbitrary dimension.

In order to state the relation of dynamics in locally one dimensional
vertices to corresponding dynamic defined on the edges of metric graph
one needs to ensure that it is possible to build a metric graph based
on network relations, proposed by incidence matrices Φ±. Figuratively
speaking, if we, for instance, associate vertex vi with interval [0, li], then
we need to glue ends of this interval with ends of other intervals related to
the vertices that are adjacent to vi. The endpoints of intervals constitute
new vertices and intervals themselves become edges of a newly defined
metric graph. If such a procedure holds, we say that the problem is graph
realisable, [1]. However, it is always possible to represent PDE on metric
graph edges by the PDEs in vertices framework.

Additionally, it is sometimes possible to relate PDEs on metric graph’s
edges with ODEs in vertices by methods of aggregation such as asymptotic
state lumping [2]. This process can be interpreted also as the aggregation
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of the process in the micro scale into the macro model.
There are even more relations between presented notions. Among all

algebraic methods that serve to examine operators on networks, we em-
phasize spectral theory which has become a standard tool in dynamical
properties analysis. From one hand, people compare the spectrum of net-
work operators and define graph measures based on them (eg. eigenvector
centrality). From another, finding the spectrum of a semigroup allows to
obtain long-time behaviour of an evolution equation. Finally, examining
the long-time behaviour of the process or its point evaluation in time is
a well-known method of recovering the weights of initial combinatorial
digraphs from observed phenomenon.

Figure 5: Two-layer digraph presenting interrelations between different network
models considered in the paper. The upper layer is related to embedded digraphs
while lower with unembbeded ones. Consequently, in upper layer there is one
more vertex representing models defined on the whole metric space, in which
models are embedded. Furthermore there are additional edges that have no
counterparts in lower layer, that represent space discretisation/aggregation.

At the end of these considerations let us return to the concept of a
network that is embedded into a larger vector space, which can sometimes
be a natural way of description. It allows us to introduce geometry, see
planar embedding of a digraph/metric graph in Subsection 3.2, instead of
giving only the weighted relation between groups of objects. Furthermore,
as presented in Subsection 7.1, in many cases the dynamics depends on the
geometry and consequently PDEs on embedded edges and ODEs/PDEs
in embedded vertices may constitute more complex dynamics compared
to their unembedded counterparts.

The mutual relations stated for combinatorial graphs, PDEs on edges
and ODEs/PDEs in vertices hold for the case of embedded networks.
Furthermore, adding the geometry, one can consider their relation with
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Figure 6: Diagram illustrating interrelation between different network models
considered in the paper. Two-layered structure shown in Fig. 5 has been pro-
jected into the plane. To indicate original layer-structure, the elements (vertices,
edges) that appear in both layers remained black while the elements unique to
the upper layer are presented in violet.

the reference vector space. Namely, network models can be regarded as
specific discretisation of the system of PDEs/ODEs defined on the whole
vector space like in the Subsection 7.2. For instance, starting from a
planar system one can choose standard discretization to obtain a set of
vertices in which the system evolves, hence the model on vertices. On
the other hand, using non-standard discretisation by describing evolution
along locally one dimensional spaces we arrive at a metric graph model.
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Finally, discretizing the latter by considering the dynamical process at
vertices of a metric graph only, we return to the combinatorial graph
system.

We present all mentioned relations in the diagram 5 having a form of
two-layered digraph. In the lower (white) layer there are objects related
to unembedded networks while on the upper (violet) one, their embedded
counterparts are captured. There is one additional vertex in upper layer
representing models defined on the whole vector space. Each vertex from
the lower layer has a directed link with its embedded counterpart, and the
link informs about the embedding into vector space. The relations shared
by both groups of objects are presented by black arrows whereas relation
specific for embedded networks (the upper layer) is by violet links. Figure
6 presents an aggregated model where both layers are included and violet
edges are the ones specific to the upper layer. Finally, on the left hand side
one can find the mathematical field where the object belongs. Assignment
presented in violet again informs about additional field characteristics to
the embedded objects.
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