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LAPLACIANS ON METRIC GRAPHS:
METHODS OF SPECTRAL GEOMETRY

GREGORY BERKOLAIKO, JAMES B. KENNEDY, PAVEL KURASOV, AND DELIO MUGNOLO

Abstract. We offer an invitation to the spectral geometry of quantum graphs, with a strong
focus on free Laplacians with standard vertex conditions on finite, compact metric graphs. We
discuss the fundamental properties of the spectrum of these operators and present the state of
the art of upper and lower bounds for their eigenvalues. We introduce a selection of the main
tools that have been invented and developed over the last 20 years in this area, and how they
can be used in spectral analysis.

This is a preliminary version of our text.
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1. Introduction

Graphs are fascinating mathematical objects: they have a rigorous mathematical description,
yet they can faithfully capture the interaction among agents in models from physics, biology,
chemistry, economics, social sciences, and more. Over the last 50 years, graphs have been an
abundant source of challenging problems not only in discrete mathematics, but also in spectral
theory; many relevant questions about combinatorial graphs have been directly motivated by
applications, including computer science and theoretical neuroscience.

Along with combinatorial graphs, another class of objects has become a popular toy model
in mathematics and applied sciences: metric graphs – the main topic of this article – have been
discovered several times in history: in topology of infinite combinatorial graphs [96], quantum
chemistry [196, 103], neuroscience [189, 68], potential theory [99], and algebraic geometry [197,
210] among others. For our purposes, the main role was played by Lumer, who was the first
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one [157, 159] who provided a precise mathematical framework of evolution equations on metric
graphs (which he called networks). Pavlov and Faddeev in [182], and independently Nicaise
in [175], observed that the Laplacian becomes self-adjoint in a natural Hilbert space, under
what we are going to refer to as standard vertex conditions, see Section 3.3: They thus paved
the way for the development of a spectral theory.

In particular, Lumer introduced in mathematical analysis a notion of ramified structure: his
construction turns enriches the combinatorial structure of a graph by associating each edge
with an interval – a metric edge, upon which Laplacians can be defined. Metric graphs are
metric measure spaces intuitively defined by suitably gluing the endpoints of intervals (0, ℓe)e∈E,
indexed by the edge set E of a combinatorial graph; one identifies such equivalence classes of
endpoints with the graph’s vertices. They are currently known under the name of quantum
graphs, a name coined in [132].

Through his work, his students and his influence on his scientific environment, Lumer was
the driving force towards the development of the “first wave” of operator theory on metric
graphs. The spectrum of Laplacians with standard vertex conditions on metric graphs: spectral
geometric issues have been discussed since [37, 194, 81, 176].

Physics has been the driving force behind the dynamic development of quantum graph theory
in the last 20 years. The discreteness of this vertex set allows for easy parametrization of
self-adjoint extensions of Laplacian-type operators, making metric graphs to favourite model
objects in mathematical physics; at the same time, the convergence of metric graph Laplacians
towards Laplace–Beltrami operators on manifolds has been exploited in differential geometry
since [81]. Relevant properties of partial differential operators that typically only arise in rough
environments can be translated to a more benign setting and then studied by easier means:
1D Sobolev spaces, Sturm–Liouville theory, and elementary combinatorics, to name a few.

This survey is devoted to provide a comprehensive overview of the main results that have
been obtained over the last 40 years in the spectral theory of Laplacians on metric graphs; and
to present different results and various mathematical tools in a unified framework: we hope
that this will foster the discourse between different communities.

At the same time, there are many topics we have not even touched upon: we have summarized
the most important ones in Section 8. Further outgrowths of the theory of Laplacians on metric
graphs are treated in the monographs [49, 167, 141] as well as in the surveys [107, 25, 41, 92].

Some motivations to study spectral geometry of metric graphs include the following:

• Counterpart of spectral geometry for manifolds
• Rate of convergence to equilibrium of the heat equations
• Applications to beam equations, buckling problems
• Spectral clustering
• Stability of nonlinear waves
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2. A toy model: the second derivative on bounded interval

2.1. Eigenvalues of distinguished realizations. As a warm up for our study of Laplacians
on metric graphs, let us consider five very simple realizations one may consider on one interval
of length L, say [0, L].

Neumann conditions. The Laplacian ∆N has domain{
u ∈ H2(0, L) : u′(0) = u′(L) = 0

}
.

The associated form is

a(u) :=

∫ L

0

|u′(x)|2 dx

with form domain
DN(a) = H1(0, L) :

the fact that it is positive and the embedding of DN(a) in L2(0, L) is compact shows that ∆N

must have countably many eigenvalues, all of them nonnegative1. (The fact that the spectrum
is discrete will extend to all Laplacian realizations whose form domain is embedded in H1(0, L),
of course, and in particular to all realizations considered in the remainder of this section.)

Indeed, the eigenvalues of ∆N are

(2.1)
k2π2

|G|2
, k = 0, 1, 2, . . . ,

and all of them are simple. To see this, first observe that constant functions clearly lie in the
null space of ∆N; furthermore, any solution of the eigenvalue equation

−u′′(x) = λu(x), x ∈ (0, L),

for λ > 0, is necessarily of the form

u(x) = A cos(
√
λx) +B sin(

√
λx), x ∈ (0, L).

Deriving this formula yields

u′(x) = −
√
λA sin(

√
λx) +B

√
λ cos(

√
λx), x ∈ (0, L).

and imposing the Neumann condition at x = 0 shows that B = 0. Hence, all eigenfunctions
are of the form

u(x) = A cos(
√
λx), x ∈ (0, L).

Imposing the second boundary condition thus means that we require the function u to complete
a half-integer number of oscillations between 0 and L. (Of course, there are infinitely many λ
that enforce this property, but in fact only countably many: this explains again why the point
spectrum is discrete.) Because

u′′(x) = −Aλ cos(
√
λx),

1Technically speaking, these are the eigenvalues of minus the Laplacian. Following a common convention in
spectral geometry, we will hitherto with an abuse of terminology refer to these nonnegative numbers, obtained
by the Courant–Fischer min-max method, as Laplacian eigenvalues.
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we see that λ is an eigenvalue if and only if
√
λL is a root of cos, i.e., if and only if λ is of

the form in (2.1). Also, the associated eigenfunctions are either constant functions, for the
eigenvalue λ = 0; or, for higher eigenvalues, multiples of the function

cos

(
kπ

L
x

)
, x ∈ (0, L), k = 1, 2, . . .

Dirichlet conditions. The Laplacian ∆D has domain

H2(0, L) ∩H1
0 (0, L) =

{
u ∈ H2(0, L) : u(0) = u(L) = 0

}
and form domain

DD(a) := H1
0 (0, L) =

{
u ∈ H1(0, L) : u(0) = u(L) = 0

}
.

Its eigenvalues, all of them simple, are

(2.2)
k2π2

|G|2
, k = 1, 2, . . .

This can be seen with a reasoning similar to that described in the Neumann case, but also by
means of a more abstract one: indeed, the second derivative with Dirichlet conditions admits
the factorization

−∆D = dd∗,

where

(2.3) df = if ′, D(d) = H1(0, L);

accordingly,
d∗f = if ′, D(d∗) = H1

0 (0, L);

and we observe that the second derivative with Neumann conditions can be written as

−∆N = d∗d.

Accordingly, by a well-known operator theoretical property, ∆D,∆N must have same eigenval-
ues, except perhaps 0. But because integrating u′′ against u shows that the ordinary differential
equation

−u′′(x)z = 0, x ∈ (0, L),

has constant functions as its sole solution (which must clearly be the constant zero function
in view of the Dirichlet conditions) we conclude that 0 is not an eigenvalue after all. The
associated eigenfunctions are multiples of

d cos

(
kπ

L
x

)
= − sin

(
kπ

L
x

)
, x ∈ (0, L),

d being the operator in (2.3).

Mixed Dirichlet/Neumann conditions. The Laplacian has, in this case, domain{
u ∈ H2(0, L) : u(0) = u′(L) = 0

}
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and form domain
DD/N(a) :=

{
u ∈ H1(0, L) : u(0) = 0

}
.

In order to determine the eigenvalues, consider the reflection operator

J : u 7→ ũ,

with

ũ(x) :=

{
u(x), if x ∈ (0, L),

u(2− x), if x ∈ (L, 2L),

Now, if ũ is an eigenfunction for the Dirichlet Laplacian on (0, 2L) associated with the lowest
eigenvalue, i.e.,

ũ(x) = B sin
( π
4L
x
)
, x ∈ (0, 2L),

then J−1ũ = ũ|(0,L) satisfies a Neumann condition at L and is, thus, an eigenfunction for the
Laplacian with mixed conditions.

The second eigenfunction for the Dirichlet Laplacian on (0, 2L), corresponding to the eigen-
value 4π2

4|G|2 , is a a full sine wave, so it vanishes at L: therefore, it does not induce an eigen-
functions for the Laplacian with mixed conditions, nor do any eigenfunctions associated with
the eigenvalue kπ2

4|G|2 of the Dirichlet Laplacian on (0, 2L), for any even k. However, the set of
eigenfunctions on (0, L) for the Laplacian with mixed Dirichlet/Neumann conditions and the
set of eigenfunctions for the Laplacian with Dirichlet conditions (0, 2L) and associated with
kπ2

4|G|2 for odd k are indeed bijective.
We conclude that the eigenvalues of the Laplacian with mixed Dirichlet/Neumann conditions

are

(2.4)
(2k − 1)2π2

4|G|2
, k = 1, 2, . . .

each of them with multiplicity one. The associated eigenfunctions are, accordingly, multiples
of

sin

(
(2k − 1)π

2L
x

)
, x ∈ (0, L), k = 1, 2, . . .

(Clearly, by the same factorization trick as above, the eigenpairs for the mixed Neumann/Dirichlet
conditions u′(0) = u(L) = 0 display the same behaviour.)

Periodic conditions. The domain of the Laplacian ∆per is{
u ∈ H2(0, L) : u(0) = u(L) and u′(0) = u′(L)

}
and the form domain is

Dper(a) := H1
per(0, L) =

{
u ∈ H1(0, L) : u(0) = u(L)

}
.
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In order to determine the eigenpairs, we will make use of the decomposition2 of L2(0, L)-
functions into their symmetric and anti-symmetric parts,

L2(0, L) = L2
sym(0, L)⊕ L2

anti(0, L)

:= {f ∈ L2(0, L) : f(x) = f(L− x) for a.e. x ∈ (0, L)}
⊕ {f ∈ L2(0, L) : f(x) = −f(L− x) for a.e. x ∈ (0, L)},

which is invariant under the Laplacian with periodic conditions. Now, take the part of the
Laplacian with periodic conditions in each of these two spaces: their domains are{

u ∈ H2(0, L) ∩ L2
sym(0, L) : u(0) = u(L) and u′(0) = u′(L)

}
and {

u ∈ H2(0, L) ∩ L2
anti(0, L) : u(0) = u(L) and u′(0) = u′(L)

}
respectively. Observe that any continuous anti-symmetric function must vanish at L

2
, and

also at 0 if it additionally satisfies the periodicity conditions. Likewise, the derivative of any
symmetric function satisfying periodic conditions vanishes both at 0 and L

2
.

In other words, the domains of the part of the Laplacian with periodic conditions in L2
sym(0, L)

and L2
anti(0, L) are isomorphic to{

u ∈ H2

(
0,
L

2

)
: u′(0) = u′

(
L

2

)
= 0

}
and {

u ∈ H2

(
0,
L

2

)
: u(0) = u

(
L

2

)
= 0

}
,

respectively: therefore, the set of eigenvalues of the Laplacian with periodic conditions on (0, L)
is the union of all eigenvalues of the Neumann Laplacian on

(
0, L

2

)
and all eigenvalues of the

Dirichlet Laplacian on
(
0, L

2

)
. We conclude that the eigenvalues are

(2.5)
(2k)2π2

|G|2
, k = 0, 1, 2, . . . :

the lowest one is a simple eigenvalue, all further ones have multiplicity two. The associated
eigenfunctions are obtained taking the eigenfunctions of the Neumann and Dirichlet Laplacians
on
(
0, L

2

)
and suitably extending them to the whole interval (0, L): any constant function is

an eigenfunction for the eigenvalue 0, whereas any higher eigenvalue is associated with both
eigenfunctions

(2.6) sin

(
2kπ

L
x

)
and cos

(
2kπ

L
x

)
, x ∈ (0, L), k = 1, 2, . . .

2Further development of this technique using representation theory of finite groups can be found in [23] and
references therein.
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Let us apply the factorization trick described above to determine the eigenvalues of a further
operator: upon introducing

(2.7) df = if ′, D(d) = H1
per(0, L),

a direct computation shows that d is self-adjoint, see also [91, Proposition A.3], hence

−∆per = dd∗ = d∗d.

Anti-periodic conditions. In this case, the operator ∆antiper has domain{
u ∈ H2(0, L) : u(0) + u(L) = 0 and u′(0) + u′(L) = 0

}
and the form domain is

Dantiper(a) := H1
antiper(0, L) =

{
u ∈ H1(0, L) : u(0) + u(L) = 0

}
.

All its eigenvalues have multiplicity two: they are given by

(2.8)
(2k − 1)2π2

|G|2
, k = 1, 2, . . .

To justify this, we start again from the formula

u(x) = A cos(
√
λx) +B sin(

√
λx), x ∈ (0, L),

for the generic solution of the eigenvalue equation (the possibility that 0 is an eigenvalue can be
ruled out, since non-zero constant functions do not satisfy anti-periodic boundary conditions.)
Imposing the boundary conditions on u and u′ we find the system{

A+ A cos(
√
λL) +B sin(

√
λL) = 0,

B − A sin(
√
λL) +B cos(

√
λL) = 0,

i.e., (
1 + cos(

√
λL) sin(

√
λL)

− sin(
√
λL) 1 + cos(

√
λL)

)(
A
B

)
= 0 :

the determinant of this matrix vanishes if and only if

(1 + cos(
√
λL))2 + sin2(

√
λL) = 2 + 2 cos(

√
λL) = 0,

i.e., precisely for those λ > 0 such that

cos(
√
λL) = −1,

which implies that λ is of the form (2.8) and that both

cos

(
(2k − 1)π

L
x

)
and sin

(
(2k − 1)π

L
x

)
, x ∈ (0, L), k = 1, 2, . . .

are eigenfunctions associated with this eigenvalue.

Krĕın–von Neumann conditions. The operator ∆KN has domain{
u ∈ H2(0, L) : u′(L) = u′(0) = L−1

(
u(L)− u(0)

)}
;
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in this case, the associated quadratic form

ã(u) :=

∫ L

0

|u′(x)|2 dx− 1

L
(u(L)− u(0))2 ,

and the form domain is
DKN(ã) := H1(0, L).

Even though the lower order perturbation is induced by a negative semi-definite matrix, the
form (ã, DKN(ã)) is accretive: indeed, ∆KN is the smallest (in the sense of quadratic forms3)
positive semi-definite self-adjoint realization of the Laplacian.

It is easy to see that H1(0, L) = Har(0, L)⊕H1
0 (0, L), where Har(0, L) is the two-dimensional

space of harmonic functions on (0, L) (i.e., polynomials of degree ≤ 1). Accordingly, 0 is an
eigenvalue of ∆KN with multiplicity 2. Because ã acts on H1

0 (0, L) as aD, one may think that the
remaining eigenvalues of ∆KN agree with those of the Dirichlet Laplacian: but this is not true,
because the relevant Hilbert space on which the operator associated with this form acts is now
L2(0, L)⊖Har(0, L). The remaining spectrum of ∆KN has been computed in [12, Example 5.1]:
the eigenvalues are given by two sequences

4k2π2

|G|2
and j2k , k = 1, 2, . . . ,

with associated eigenfunctions

sin

(
2kπ

L
x

)
and sin

(
jk
L

(
x− 1

2

))
, x ∈ (0, L), k = 1, 2, . . . ,

respectively. Here, (jk) is the monotonically growing sequence of the zeros of the transcendent
equation

j

2
= tan

(
j

2

)
:

they satisfy
jk
2

∈
(
π(k − 1), π

(
k − 1

2

))
, k = 1, 2, . . . ,

Apart from 0, all eigenvalues are simple.

Let us stress that all Laplacian realizations discussed above satisfy a one-dimensional Weyl
asymptotics, i.e., the eigenvalue sequence (λj)j∈N, counted with multiplicity, satisfies

(2.9) λj =
π2

|G|2
j2 +O(j) as j → ∞.

This property is obviously satisfied by both the Dirichlet and the Neumann realizations of the
Laplacian on (0, L), and thus extend to all realizations that are sandwiched, in the sense of

3Given two quadratic forms b, c we write b ≼ c – and we say that c is smaller than b in the sense of quadratic
forms – if

D(b) ⊃ D(c) and b(u) ≤ c(u) for all u ∈ D(c).
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quadratic forms, between them. The explicit computation of the eigenvalues of ∆KN allows to
check that (2.9) holds for the Krĕın–von Neumann extension as well.

Remark 2.1. We have seen that the eigenvalues (µk)k∈N and (λk)k∈N∗ of the Laplacian with
Neumann and Dirichlet conditions, respectively, satisfy

(2.10) µk = λk, k = 1, 2, . . .

We have stressed that this is due to a suitable factorization of the Laplacian that is not available
in higher dimension: for open bounded domains of Rd we generally only have the inequality

(2.11) µk ≤ λk, k = 1, 2, . . .

discovered in [97].

Remark 2.2. The boundary conditions discussed above are by no means the only ones that
induce a self-adjoint Laplacian realization: it is a well-known fact of Sturm–Liouville theory
[112] that such conditions can be, with a more modern formalism, parametrized as follows:(

u(0)
u(L)

)
∈ Y,

(
−u′(0)
u′(L)

)
+R

(
u(0)
u(L)

)
∈ Y ⊥

for any subspace Y of C2 and any Hermitian 2 × 2-matrix. The special realizations discussed
above arise taking R = 0 and considering

• Y = C2 for Neumann conditions,
• Y = {0}2 for Dirichlet conditions,
• Y = {0} ⊕ C for mixed Dirichlet/Neumann conditions,

• Y =

〈(
1
1

)〉
for periodic conditions,

• Y =

〈(
1
−1

)〉
for antiperiodic conditions.

Remark 2.3. We have in particular seen that two sets coincide, counting multiplicity: the union
of the spectra of ∆N,∆D as well as the union of the spectra of ∆per,∆antiper. The reason for this
behaviour has been explained, in the more general setting presented in Remark 2.2, in [38].

3. Metric graphs and function spaces

3.1. Metric graph. The current review will be devoted to so-called standard Laplacians only
on connected finite compact metric graphs, therefore introducing metric graphs and defining
differential operators we shall simplify common definitions to serve our purposes.

Let E be a finite set of compact intervals e ∈ E, which we will henceforth call edges upon
associating with each of them a length ℓe ∈ (0,∞). Then, E is their disjoint union

E :=
⊔
e∈E

[0, ℓe].

Consider any partition of the set of interval’s endpoints into equivalence classes v with respect
to some equivalence relation ∼: we call such ∼ and the associated equivalence classes a wiring
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and the resulting vertices, respectively. The set of all vertices will be denoted by V ∋ v. Then
the metric graph G is the quotient metric space,

G = E⧸∼,

that is, the set E upon identifying some of the edges’ endpoints. For a given E , different
equivalence relations ∼ lead to different metric graphs which may be seen as mutual “rewirings”.

More formal equivalent definitions of metric graphs can be found in [152, 49, 165, 141].
Informally, a metric graph can be visualized as a combinatorial graph each of whose edges

is seen as a compact interval. Orientation of the intervals plays no role in the definition – only
the lengths of the edges and the way the intervals are connected play a role. But this analogy
is not universal since we allow loops - edges connected by both endpoints to the same vertex,
- and parallel edges – several edges connecting the same vertices.

If the vertex v contains an endpoint of the edge e, we will often use the notation

e ∼ v,

and say e is incident in v. Likewise, if v,w are endpoints of the same edge, or if a given vertex
is an endpoint of two different edges e, f, then we say that the vertices v,w are adjacent, and
that the edges e, f are adjacent, respectively. The set of all edges that are incident in V will
be denoted by Ev. The degree of a vertex v, denoted deg v, is the number of elements in the
equivalent class v. It coincides with the number of incident edges Ev if no loops are involved.

The total length, or volume, of the metric graph G is the sum of the lengths of the edges:

(3.1) |G| :=
∑
e∈E

ℓe.

(We stress that the total length does not change upon rewiring.)
The total length is always finite since we consider only metric graphs formed by a finite set

of compact intervals: this class is traditionally referred to in the literature as compact metric
graphs. Unless explicitly stated, we will in this article always assume G to be compact.

All abstract notions – especially, (path) connectedness – that can be defined for metric spaces
carry over to metric graphs. We will, however, sometimes need to introduce new refined notions
that have no direct counterpart in the theory of general metric spaces, see e.g. Theorem 5.1
below.

Example 3.1. Let E = 3 and take Ik = [0k, ℓk], k = 1, 2, 3, then S = {01, 02, 03, ℓ1, ℓ2, ℓ3}.

01 ℓ1 02 ℓ2 03 ℓ3

I1 I2 I3

If we set v1 = {01}, v2 = {02}, v3 = {ℓ1}, v4 = {ℓ1, ℓ2, 03}, then we generate a star graph on
three edges: see Figure 1.
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01

ℓ1

02

ℓ2
03

ℓ3

e1 e2

e3

01

ℓ1

02

ℓ2
ℓ3

03

e1 e2

e3

Figure 1. The 3-star graph of Example 3.1 with the first-mentioned choice of
coordinates (left) and the alternative coordinates (right).

Choosing, for example, v1 = {01}, v2 = {02}, v3 = {01}, v4 = {ℓ1, ℓ2, ℓ3} would lead to the
same graph, but the orientation of e3 in the chosen “local coordinates” would be reversed.

By joining v2, v3, thus producing the three vertices v1 = {01}, ṽ2 = {02}, v4 = {ℓ1, ℓ2, ℓ3}, we
would obtain a so-called lasso-graph.

01
ℓ1

02ℓ2
03ℓ3e1

e2

e3

Figure 2. The lasso graph obtained identifying two vertices of the right 3-star in Figure 1.

3.2. Functions on graphs. Since our goal is to study differential operators on metric graphs,
we need to consider functions defined on G.

Because G is a metric space, the notion of continuity is canonically defined and allows us to
consider the space

C(G)
of scalar-valued continuous functions supported on G; we can, likewise, define the spaces Cα(G)
or Lip(G) of Hölder or Lipschitz continuous functions on G. Furthermore, a metric graph can
be canonically turned into a metric measure space by endowing it with the measure given by
the direct sum of Lebesgue measures on all edges: in particular, this allows for the introduction
of the Hilbert space

L2(G) :=
⊕
e∈E

L2(e), L2(e) ≈ L2(0, ℓe).

Interval endpoints form a set of measure zero and therefore can be ignored in the definition.
Introducing the Sobolev spaces Hj we shall with slight abuse of terminology require that the

functions are continuous at the vertices:

Hj(G) :=

{
u ∈ C(G) ∩

⊕
e∈E

Hj(e) : ∥u(j)∥L2(G) <∞

}
, Hj(e) ≈ Hj(0, ℓe).
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The functions from Hj are those functions which j-th weak derivatives are square summable
on each edge and therefore are continuous inside the edges. The definition of Hj(G) requires
in addition that the functions are continuous at the vertices, which is natural if we want the
functions to be defined everywhere on the metric graph G including the vertices. In what
follows we are going to use the function values at the vertices u(v), v ∈ V.

It is inappropriate to require for functions from Hj with j ≥ 2 any additional continuity con-
dition on the derivatives since the definition of Hj(G) should be independent of the orientation
of the edges. We introduce instead the sum of normal derivatives at a vertex v:

(3.2) ∂u(v) :=
∑
e∼v

∂ue
∂n

(v),

where the sum is taken over all edges e connected at the vertex v and ∂ue
∂n

(v) denotes the limiting
value as x approaches v of the first derivative of ue taken in the direction inside the edge e.
Note that in the case of loops, both endpoints contribute into the sum, but the derivatives are
taken in the opposite directions.

3.3. The standard Laplacian. These few ingredients are already sufficient to start develop-
ing an operator theory of Laplacians on metric graphs: indeed, we can introduce the quadratic
form

(3.3) aG(u) :=

∫
G
|u′(x)|2 dx =

∑
e∈E

∫ ℓe

0

|u′e(x)|2 dx.

With an abuse of notation, we denote by aG the sesquilinear form associated with the quadratic
form, too. Taking D(aG) = H1(G) as its form domain leads us to the following.

Proposition 3.2. The self-adjoint operator −∆G associated with aG by means of
D(−∆G) := {u ∈ H1(G) : aG(u, v) = (w, v)L2(G) for all v ∈ H1(G) and some w ∈ L2(G)},

−∆Gu := w

is explicitly given by

D(−∆G) =
{
u ∈

⊕
H2(e) for all e ∈ E : u ∈ C(G), ∂u(v) = 0 for all v ∈ V

}
,

−∆Gu = −u′′.
(3.4)

The operator −∆G in (3.4) is called the Laplacian with standard vertex conditions, or simply
standard Laplacian. We are going to refer to the spectrum of the standard Laplacian on G as
the spectrum of G.

It is easy to see that −∆G is closed; therefore, D(−∆G) is also a Hilbert space whenever
equipped with the graph norm.

Remark 3.3. Note that D(−∆G) ⊂ H2(G), but the functions from the domain satisfy additional
condition

(3.5) ∂u(v) ≡
∑
e∼v

∂ue
∂n

(v) = 0
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which is often referred to as Kirchhoff condition in the literature, since it reminds of the
Kirchhoff’s law for electrical networks and at the same time guarantees that the total flux
through the vertex is zero. On the other hand any other Hermitian vertex condition (not
considered here) ensures conservation of the quantum flux.

We stress that (3.5) is fully determined by the quadratic form (including its domain, in
particular, by the continuity at the vertices) and by the requirement that its associated operator
is self-adjoint in L2(G).

Suppose deg v = 2, with v ∼ e1, e2.

v

e1 e2 G

Then orienting the two edges appropriately, the continuity and zero normal derivate condi-
tions imply that the function and its first derivative are continuous at the vertex. Create a
new graph G̃ by replacing e1 and e2 with a single edge e of length ℓe = ℓe1 + ℓe2 , preserving all
other incidence and adjacency relations. This “deletes” the vertex v.

e
G̃

Conversely, we speak of inserting a degree two vertex at a point x whenever we replace x ∈ e
with a dummy vertex, thus “dividing” e into two edges.

Such degree two vertices will be useful in some of our constructions and will be called dummy
vertices. All vertices with deg v = 2 are called essential. In the case of cycle graph – the graph
made of one interval with both endpoints identified into one vertex – the vertex of degree two
cannot be removed.

Theorem 3.4. Let G be a metric graph. If G̃ is obtained from G by inserting a dummy vertex
at any x ∈ G, then there is an isometry between the graphs G and G̃, which induces an isometric
isomorphism between the spaces L2(G) and L2(G̃), C(G) and C(G̃), H1(G) and H1(G̃), as well
as D(−∆G) and D(−∆G̃) and the operators −∆G and −∆G̃ are unitarily equivalent.

Inserting or deleting a dummy vertex does not “change” the graph at a metric or measure-
theoretic level. Any point x ∈ G may thus be treated as a vertex if it is convenient to do
so.

Proposition 3.5. The spectrum of the standard Laplacian −∆G is pure discrete and consists
of infinitely many non-negative eigenvalues λn tending to +∞. Its lowest eigenvalue is 0 and
its multiplicity agrees with the number of connected components of G.

Because the spectrum of the standard Laplacian on a disconnected metric graph is merely
the union of the spectra of the standard Laplacian on each connected component, we will
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for simplicity always assume the metric graph G to be connected. We adopt throughout the
following notations: the spectrum of the standard Laplacian will be denoted by

(3.6) 0 = µ1(G) < µ2(G) ≤ µ3(G) ≤ . . . µn(G) → ∞;

or by

(3.7) 0 = µ1 < µ2 ≤ µ3 ≤ . . . µn → ∞,

if there is no risk of confusion. The difference µ2−µ1 = µ2 is often referred to as spectral gap.
Clearly, the validity of the Kirchhoff condition implies that every vertex is incident with at

least one e satisfying
∂ue
∂n

(v) ≥ 0

Definition 3.6. Given a metric graph G and a non-negative continuously differentiable function
0 ≤ u ∈ D(∆), a vertex v ∈ V of degree deg v ≥ 2 shall be called a serious point (for the function
u) if u(v) ̸= 0 and there exist at least two edges e1, e2 ∼ v such that

(3.8)
∂uei
∂n

(v) ≥ 0, i = 1, 2.

Observe that any local maximum of f is serious.

3.4. Examples of standard Laplacians.

Example 3.7. Let us present a few fundamental examples of a metric graphs: If all edges have
the same length, then we call it equilateral (but beware the different convention in (10) below).
(1) Paths are intervals identified with metric graphs.
(2) Loops are constructed by identifying both endpoints of a path.
(3) Figure-8 graphs are constructed from two loops G1,G2 (of possibly different lengths) upon

identifying two vertices v1 in G1 and v2 in G2.
(4) Flowers consist of one central vertex (the center) and E loops (the leaves) attached to it.

Figure 3. A flower on six edges (petals).

(5) Stars consist of a central vertex v (the center) and E ≥ 2 edges radiating out from v.
(6) Pumpkins are built upon non-simple combinatorial graphs consisting of two vertices and e

parallel edges, having both vertices as endpoints.
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Figure 4. A star on 6 edges (rays).

Figure 5. A pumpkin graph on six edges (slices).

(7) Pumpkin chains consist of V vertices v1, . . . , vV and E =
∑n−1

i=1

∑mi

j=1 edges, withmi parallel
edges between vi, vi+1. They are called η-homogeneous if mi ≡ η ∈ N, or locally equilateral
if, for each i = 1, . . . , n − 1, the mi parallel edges between vi and vi+1 all have the same
length (that is, the corresponding pumpkin subgraph is equilateral). In any case, we refer
to v1, vV as the antipodal points.

Figure 6. A non-homogeneous pumpkin chain graph.

(8) Pumpkin stars consist of a central vertex v (the center) and n pumpkins (each with
m1, . . . ,mn parallel edges) attached to it by either of their endpoints. They are called
homogeneous if mi ≡ η ∈ N.

(9) Lasso (tadpole) graphs are obtained from one path graph (the handle) G1 and one loop G2

upon identifying a vertex of G1 and an arbitrary point of G2.

Figure 8. A lasso graph.
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Figure 7. A homogeneous pumpkin star on 18 edges.

(10) More generally, stowers are obtained gluing one flower graph and one star graph at their
centers. 4

Figure 9. A stower graph with Ep = 2 petals and El = 4 leaves.

(11) Complete metric graphs are built upon simple combinatorial graphs consisting of V vertices
and exactly one edge joining any pair of vertices, meaning E = V (V−1)

2
edges in total.

Figure 10. A complete graph on six vertices.

In order to obtain effective estimates it is important to be able to calculate the spectrum of
an optimiser explicitly, which is possible only for graphs with very special choice of the edge
lengths. The following examples are taken from [119, 26, 160].

Lemma 3.8. Let G be a metric graph of total length |G|. The following assertions hold.
(a) If G is a path graph, then

(3.9) µ2 =
π2

|G|2
.

4Exceptionally, we call stowers (and hence lasso graphs) equilateral if each of the flower’s edges has twice the
length of each of the star’s edges.



D
ra

ft

18 B. BERKOLAIKO, J.B. KENNEDY, P. KURASOV, AND D. MUGNOLO

(b) If G is a loop, then

(3.10) µ2 =
4π2

|G|2
.

(c) If G is a figure-8 graph, then

(3.11) µ2 =
4π2

|G|2
.

(d) If G is an equilateral flower graph on E ≥ 2 leaves, then

(3.12) µ2 =
π2E2

|G|2
.

(If E = 1, then G is a loop.)
(e) If G is an equilateral star graph on E ≥ 2 edges, then

(3.13) µ2 =
π2E2

4|G|2
.

(f) If G is an equilateral pumpkin graph on E edges, then

(3.14) µ2 =
π2E2

|G|2
.

(g) If G is an η-homogeneous pumpkin chain, then

(3.15) µ2 =
η2π2

|G|2
.

(h) If G is an η-homogeneous pumpkin star on E = mη edges, m ≥ 2, then

µ2 =
π2E2

4|G|2
.

(i) If G is a lasso graph with a handle of length ℓ1 and a loop of length ℓ2, then k2 is an
eigenvalue of ∆G if and only if

(3.16)
(
cot kℓ1 − 2 tan

kℓ2
2

)
sin

kℓ2
2

= 0.

In particular,

µ2 =
(arcsin 1√

3
)2

ℓ2

if G is equilateral (beware the above convention!), i.e., ℓ2 = 2ℓ1.
(j) If G is an equilateral stower graph (beware the above convention!) on Ep petals and El

leaves, with all leaves of equal length and all petals of (equal) double length, then

(3.17) µ2 =
π2

|G|2

(
Ep +

El
2

)2

.
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(k) If G is an equilateral complete graph on V vertices, then

(3.18) µ2 =

(
arccos

1

1− V

)2
V 2(V − 1)2

4|G|2
.

Lemma 3.8.(k) has been used in [81] to prove an interesting result in differential geometry:
given a compact manifold M of dimension d ≥ 3, a Riemannian metric on M can be chosen
such that the lowest positive eigenvalue of the corresponding Laplace–Beltrami operator has
arbitrarily large multiplicity.

The proof of most of the items in Lemma 3.8 is based on a simple but crucial symmetry argu-
ment which we provide in Lemma 3.10 below. The main exceptions are given by Lemma 3.8.(c)
and Lemma 3.8.(i): why (3.10) and (3.16) hold will be discussed in Example 6.5 below, whereas
(3.16) can be proved as in Example 3.9 below.

Example 3.9. Lemma 3.15.(e) is based on the computation of a secular equation5 for a non-
equilateral graph. Based on [41, Example 2.3], let us study again the 3-star graph of Exam-
ple 3.1, assigning now a length ℓk > 0 to each ek, k = 1, 2, 3.

Direct ek ≃ [0, ℓk] such that 0 ∼ vk, ℓk ∼ v4 (corresponding to the orientation in Figure 1-
right). On each edge, in local coordinates, an eigenfunction ψ for some eigenvalue λ > 0 is just
a solution of −ψ′′ = λψ and thus given by

ψ|ek(x) = Ak cos(
√
λx) +Bk sin(

√
λx), Ak, Bk ∈ R, k = 1, 2, 3.

The Kirchhoff condition reduces to ψ′(vi) = 0 for i = 1, 2, 3: thus Bk = 0, k = 1, 2, 3.
Continuity at v4 implies

(3.19) A1 cos(
√
λℓ1) = A2 cos(

√
λℓ2) = A3 cos(

√
λℓ3).

The Kirchhoff condition at v4 implies

−
√
λA1 sin(

√
λℓ1)−

√
λA2 sin(

√
λℓ2)−

√
λA3 sin(

√
λℓ3) = 0,

or

(3.20) A1 sin(
√
λℓ1) + A2 sin(

√
λℓ2) + A3 sin(

√
λℓ3) = 0.

Taking into account (3.19) we reach at the secular equation

(3.21) tan(
√
λℓ1) + tan(

√
λℓ2) + tan(

√
λℓ3) = 0

that characterizes the (nonzero) eigenvalues of G: we recover (3.13) if the star is equilateral.

In the following, we call a permutation O on the edge set E of an equilateral metric graph
G an automorphism of G if it respects adjacency, i.e., if Oe, Of share an endpoint whenever
e, f ∈ E do. An automorphism is called orientation-preserving if, additionally, it respects
oriented adjacency, i.e., if Oe, Of share an initial (resp., terminal) endpoint whenever e, f ∈ E
do: in other words, we impose the condition that if v is identified with 0 (resp., ℓ) on both e, f,
then so is the common vertex of Oe, Of. If G is equilateral, say ℓe ≡ ℓ, then any automorphism

5Note that secolar equations are generally not unique!
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O canonically induces an isomorphism from L2(G) to itself, which for simplicity we denote
again by O, via

(Of)e(x) = fOe(x), for a.e. x ∈ (0, ℓ).

Now, let us consider the orthogonal projector PO onto the subspace of L2(G)-functions that
are pointwise constant along the orbits:

L2(G) := L2
s (G)⊕ L2

a(G) := POL
2(G) + (Id−PO)L2(G).

Because O commutes with ∆G, so does PO: this implies that if the automorphism group
generated by O acts transitively, the following spectral decomposition holds:

Lemma 3.10. Let O be an automorphism of an equilateral metric graph G such that given
any two edges e, f ∈ E there is n ∈ N such that f = One. Then the spectrum of the standard
Laplacian on G is the union of the spectra of ∆

G
∣∣
L2
s (G)

and ∆
G
∣∣
L2
a(G)

(including multiplicities).

We can make good use of this decomposition: in particular, L2
s(G) is often isomorphic to

L2(G̃) for a smaller graph that is easier to study, whereas the functions in the domain of ∆
G
∣∣
L2
a(G)

can be shown, in many cases, to have vertices with Dirichlet conditions instead of standard
vertex conditions: this has been used at least since [173] in the analysis of radially symmetric
trees. A more detailed analysis [27, 23] on general symmetric graphs decomposes the space
L2
a(G) into a sum over irreducible representations of the automorphism group. From this point

of view, L2
s (G) is the part of the Hilbert space corresponding to the trivial representation.

Example 3.11. In the case of an equilateral stars S on m edges, the Laplacian ∆S can be
decomposed into a Laplacian on one interval with Neumann conditions at both endpoints; and
Laplacians on m − 1 copies of the same interval with mixed Dirichlet/Neumann conditions.
The same idea has been used in [172] to determine the spectrum of the Ornstein–Uhlenbeck
operator on a star graph.

3.5. Dirichlet Laplacians. Because the eigenfunction associated with the lowest eigenfunc-
tion of the standard Laplacian is constant, all further eigenfunctions – and in particular the
eigenfunction ψ associated with the second lowest eigenfunction – must be orthogonal to con-
stants and, hence, change sign. By Proposition 3.18, eigenfunctions are continuous and, hence,
must vanish at the interface between the support of their positive and negative parts. Such
sets

{x ∈ G : ψ(x) ≥ 0} and {x ∈ G : ψ(x) ≤ 0}
define metric graphs in their own right, but ψ does not satisfy standard vertex conditions at
all their vertices. This motivates to introduce a more general class of Dirichlet Laplacian. We
let VD be a subset of V – we will call it the Dirichlet set – and consider the same quadratic
form as in (3.3), namely

(3.22) aVD
G (u) :=

∫
G
|u′(x)|2 dx =

∑
e∈E

∫ ℓe

0

|u′e(x)|2 dx,



D
ra

ft

LAPLACIANS ON METRIC GRAPHS: METHODS OF SPECTRAL GEOMETRY 21

but with the domain

(3.23) H1
0 (G;VD) := {f ∈ H1(G) : f(v) = 0 for all v ∈ VD}.

We can then generalize Proposition 3.2 as follows.

Proposition 3.12. Let VD ⊂ V, then the self-adjoint operator −∆VD
G associated with aVD

G by
means of

D(−∆VD
G ) := {u ∈ H1

0 (G;VD) : a
VD
G (u, v) = (w, v)L2(G) for all v ∈ H1

0 (G;VD) and some w ∈ L2(G)},
−∆VD

G u := w,

is explicitly given by

D(−∆VD
G ) =

{
u ∈

⊕
H2(e) for all e ∈ E : u ∈ C(G),

u(v) = 0 for all v ∈ VD

∂u(v) = 0 for all v ∈ VN

}
,

−∆VD
G u = u′′.

(3.24)

The operator ∆VD
G in (3.24) is called the Laplacian with Dirichlet conditions in VD or simply

the Dirichlet Laplacian.
We obtain the following counterpart of Proposition 3.5.

Proposition 3.13. If VD is not empty, then the spectrum of the Dirichlet Laplacian ∆VD
G is

purely discrete and consists of infinitely many positive eigenvalues tending to +∞. Its lowest
eigenvalue is simple and strictly positive.

The spectrum of the Dirichlet Laplacian with VD ̸= ∅ will be denoted by

(3.25) 0 < λ1(G;VD) < λ2(G;VD) ≤ λ3(G;VD) ≤ . . . ≤ λn(G;VD) → ∞;

or by

(3.26) 0 < λD1 < λD2 ≤ λD3 ≤ . . . ≤ λn → ∞.

if there is no risk of confusion concerning the Dirichlet set.
The following lemma compares the eigenvalues of ∆G with and without Dirichlet conditions.

The proof is based on monotonicity and co-dimension of the domains (3.23), see [48, 146, 46].

Lemma 3.14. For any VD ⊂ G, v ∈ G and k ∈ N we have

µk(G) ≤ λk(G;VD) ≤ µk+|VD|(G),(3.27)
λk(G;VD) ≤ λk(G;VD ∪ {v}) ≤ λk+1(G;VD).(3.28)

Remarkably, upon imposing a Dirichlet condition at the center vc of equilateral stowers (and,
in particular, of flowers or stars) we even have λ1(G; {vc}) = µ2(G): metric graphs with this
behavior are said to obey the Dirichlet criterion with respect to v (in this case, v = vc): this is
a crucial property in the study of classes of graphs that are extremal with respect to µ2 in [26].

Let us collect the values of λ1 for a few fundamental examples: observe that many of the
examples discussed in Lemma 3.8 become trivial upon imposing Dirichlet boundary conditions:
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for instance, upon imposing a Dirichlet condition at its center vertex vc, the Laplacian on the
flower graph (resp., on the star graph on E ≥ 2 edges) becomes a direct sum of Laplacians on
disjoint intervals with Dirichlet-only (resp., mixed Dirichlet/Neumann) boundary conditions.

Lemma 3.15. Let G be a metric graph of total length |G|. The following assertions hold.
(a) If G is a path graph with endpoints v1, v2, then

(3.29) λ1(G; {v1}) =
π2

4|G|2
and λ1(G; {v1, v2}) =

π2

|G|2
.

(b) If G is an equilateral star graph on E ≥ 2 edges and VD = {v ∈ V : deg(v) = 1}, then

(3.30) λ1(G;VD) =
π2E2

4|G|2
.

(c) If G is an η-homogeneous pumpkin chain with antipodal points v1, v2, then

(3.31) λ1(G; {v1}) =
η2π2

4|G|2
and λ1(G; {v1, v2}) =

η2π2

|G|2
.

(d) If G is a stower graph with center vc on Ep petals and El leaves, with all leaves of equal
length and all petals of (equal) double length, then

(3.32) λ1(G; {vc}) =
π2

|G|2

(
Ep +

El
2

)2

.

(e) If G is a lasso graph with a handle of length ℓ1 and a loop of length ℓ2, then k2 is an
eigenvalue of ∆VD

G if and only if k > 0 is a root of

2 sin(kℓ1) (cos(kℓ2)− 1) + cos(kℓ1) sin(kℓ2) = 0.

3.6. Eigenvalue asymptotics. We know from the proof of Proposition 3.5 that the Laplacian
with standard vertex conditions (and, possibly, Dirichlet conditions at a vertex set VD) has
compact resolvent. Like in the case of a single interval, it is natural to wonder about the
growth behavior of the eigenvalues. Because the embedding of C(G)∩

⊕
e∈EH

2(e) into L2(e) is
not only compact, but even of trace class by Proposition 3.18, the resolvent (λ−∆G)

−1 for each
λ < 0 of trace class, hence its strictly positive eigenvalues must form a summable sequence.
The following Weyl-type asymptotic delivers a finer description: in the equilateral case it has
been known since [176], but this assumption was later removed in [200].

Proposition 3.16. Let G be a compact metric graph with total length |G| and let VD ⊂ V
(possibly empty). Then

λk(∆
VD
G ) =

π2k2

|G|2
+O(k) as k → ∞.

No explicit form for lower order terms can be obtained (with the exception of the single
compact interval) since the eigenvalues form an almost periodic sequence being zeroes of a
trigonometric polynomial [31, 150, 141].
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Proof. For all VD ⊂ V the operator −∆VD
G can be sandwiched, in the sense of quadratic forms,

between the operators associated with aD, aN: these are the forms that act as aG on the domains

D(aD) =
⊕
e∈E

H1
0 (e), D(aN) =

⊕
e∈E

H1(e),

respectively. Their associated operators are the direct sums of the Laplacians with Dirichlet
and Neumann conditions on each interval e = (0, ℓe), respectively, and we have already seen
that the eigenvalues of both satisfy the Weyl asymptotics (2.9). □

Because ∆VD
G is a self-adjoint, negative semidefinite operators on L2(G), it generates a semi-

group. Let us collect known information about it: we refer to [167, Chapter 6] for the proofs.

Proposition 3.17. The quadratic form aG in (3.22) is a Dirichlet form whenever defined
on D(a) = H1

0 (G;VD) for any (possibly empty) subset VD ⊂ V. In particular, the strongly-
continuous semigroups generated by this realization on L2(G) is positivity-preserving and L∞-
contractive.

If we denote by ∆VD
G the Laplacian on G with standard vertex conditions on V \ VD and

Dirichlet conditions on VD, and by ∆G the Laplacian on G with standard vertex conditions on
all vertices, then the domination inequalities

et∆
VD2
G ≤ et∆

VD1
G ≤ et∆G

hold, in the sense of Banach lattices, for all ∅ ≠ VD1 ⊂ VD2 ⊂ V.

Several embedding results are known for the relevant function spaces, with important con-
sequences for the spectral properties of Laplacians on metric graphs, too. The following asser-
tions have been proved in [72, Corollary 2.3], [167, Lemma 3.27], [171, Lemma 3.7] and [124,
Lemma 3.2].

Proposition 3.18. The following assertions hold.
(1) The space H1(G) is compactly embedded into C(G).
(2) The space W 1,∞(G) is continuously embedded into Lip(G).
(3) The space H1(G) is continuously embedded into C

1
2 (G), and the 1

2
-Hölder seminorm of any

f ∈ H1(G) is no larger than ∥f ′∥L2(G).
(4) The embedding of H1(G) into L2(G) is of Hilbert–Schmidt class, while the embedding of

H1(G) ∩
⊕

e∈EH
2(0, ℓe) into L2(G) is of trace class.

Let us observe an immediate consequence of Proposition 3.18: the space C(G)∩
⊕

e∈EH
2(0, ℓe),

and in particular the domain ∆G, is continuously embedded into Lip(G).

Corollary 3.19. Let VD ⊂ V (possibly empty). Then all eigenfunctions of ∆VD
G are Lipschitz

continuous over G.

Furthermore, it follows from Proposition 3.18.(4) that the semigroup generated by ∆VD
G is

a trace class operator for all t > 0. The following short-time asymptotics of the trace has
been known since [195, 175]: this is a first evidence of the fact that the spectrum allow us to
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solve an inverse geometric problem, and in particular to reconstruct volume and some relevant
combinatorial quantities associated with G.

Theorem 3.20. For a metric graph on V vertices and E edges there holds

Tr( et∆G) =
|G|√
4πt

+
V − E

2
+ o(t) as t→ 0.

If VD is the set of all vertices of degree 1, then

Tr( et∆
VD
G ) =

|G|√
4πt

+
Vr − E

2
+ o(t) as t→ 0,

where Vr is the number of ramification vertices, i.e., of vertices of degree ≥ 3.

3.7. First results in spectral geometry. This survey is devoted to the topic of spectral
geometry, that is, how the metric and combinatorial feature of the underlying metric graph G
influence the spectrum (either the individual eigenvalues of their distribution as an ensemble)
of the two Laplacian realizations on L2(G) we have just introduced. To give a flavor of this
topic, let us first introduce two geometric quantities.

Definition 3.21. The mean distance MeanDist(G) and diameter Diam(G) are given by

MeanDist(G) := 1

|G|2

∫
G

∫
G
dist(x, y) dx dy.

and
Diam(G) := sup

x,y∈G
dist(x, y),

respectively.
If VD ̸= ∅, the mean distance MeanDist(G;VD) and the inradius Inr(G;VD) from VD are

given by

MeanDist(G;VD) :=
1

|G|

∫
G
dist(x,VD) dx,

and
Inr(G;VD) := sup

x∈G
inf
v∈VD

dist(x, v),

respectively.
We also introduce two further non-standard quantities: the triameter is

(3.33) Triam(G) := max
x1,x2,x3∈G

min
j ̸=k

dist(xj, xk);

while the avoidance diameter is

(3.34) AvDiam(G) := max
γ∈Γ

min
t∈S1

dist
(
γ(−t), γ(t)

)
,

where S1 is the unit circle in C and let Γ denote the class of injective continuous maps from S1

to G.
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In other words, the triameter measures the maximal pairwise separation among any three
points on G; whereas the avoidance diameter measures how far apart two points can remain
while exchanging places.

We can now provide two examples of spectral geometric results which can be derived from
the variational properties of ∆G in an elementary way. The first one is [183, Theorem 4.4.3].

Corollary 3.22. Let ∅ ≠ VD ⊂ V. Then

λ1(G;VD) ≥
1

|G|MeanDist(G;VD)
>

1

|G| Inr(G;VD)
.

Proof. We deduce from Proposition 3.18.(3) that

|f(x)− f(y)|2 ≤ dist(x, y)∥f ′∥2L2(G)

and in particular, letting y be the element of VD of minimal distance from x and integrating
over x,

(3.35) ∥f∥2L2(G) ≤ ∥f ′∥2L2(G)

∫
G
dist(x,VD) dx.

Now the assertion follows upon integrating (3.35) from L2 − L∞-Hölder inequality, with strict
inequality because dist(·,VD) is not constant. □

Furthermore, taking VD = {v} for some v ∈ G such that

MeanDist(G) = 1

|G|

∫
G
dist(x, v) dx

and combining (3.35) with Lemma 3.14, the following was deduced in [32].

Corollary 3.23. There holds

µ2(G;VD) ≥
1

|G|MeanDist(G)
>

1

|G|Diam(G)
.

The bound in Corollary 3.22 will be improved in Section 5.3, whereas one further estimate
by diameter sharpening Corollary 3.22 will be otbained in Section 5.3.2.

Remark 3.24. A particularly important class of non-standard vertex conditions are the so-called
δ-type conditions. They are physically realizable and, curiously, can be used to approximate all
other self-adjoint conditions [78]. They are interesting in the context of spectral optimization
because they interpolate between standard and Dirichlet conditions at a vertex.

Letting T := R/πZ (in other words, T is the interval
[
−π

2
, π
2

]
with its ends identified), we

consider the operator ∆γ
G with parameters γ : V → T defined by

D(∆γ
G) =

{
u ∈ C(G) ∩

⊕
H2(0, ℓe) : cos(γv)

∑
e∼v

∂ue
∂n

(v) = sin(γv)u(v)

}
,

∆γ
Gu = u′′(3.36)

We remark that u(v) is well-defined because the function u is continuous.
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In particular, letting γv = 0 endows the vertex v with the standard vertex condition, while
letting γv = π

2
turns the conditions to Dirichlet. The real number tan(γv) is sometimes called

the strength of the δ potential at the vertex v. In this way, the Dirichlet condition corresponds
to infinite strength. We wrote the conditions in the above way to allow treating the Dirichlet
condition on an equal footing with others.

Remark 3.25. Just like the anti-periodic conditions are dual to the periodic conditions on an
interval, it is also possible to consider a class of vertex conditions dual to the standard ones: they
are usually referred to as anti-Kirchhoff or anti-standard conditions. Likewise, δ′-conditions
are dual to δ-conditions. We refer to [38, 149, 192] for a discussion of these exotic conditions.

4. Basic properties of the spectrum

Here we briefly list some fundamental properties of the spectrum of a compact graph.

4.1. Discreteness. The spectrum of a compact metric graph (i.e., a graph with finitely many
egdes of finite total length) with general self-adjoint vertex conditions is well-known to be
discrete: it consists of isolated eigenvalues of finite multiplicity. The proof (see, for example,
[49, Thm. 3.1.1]) proceeds using the standard technique: the resolvent is shown to be a compact
operator in L2. Indeed, it is a bounded operator from L2 to H2, which, in turn, is compactly
embedded into L2.

4.2. Analyticity. Spectrum of the Laplacian on a metric graph has been shown in [48, 135]
to be analytic with respect to the choice of the vertex conditions and edge lengths.

More precisely, taking the operator ∆γ
G as our setting, for every graph G there is an analytic

function ΦG : CV × (C \ {0})E × C → C such that the eigenvalues λ are the roots of

(4.1) ΦG(γ, {ℓe}, λ) = 0.

The multiplicity of the eigenvalue λ coincides with the algebraic multiplicity of the root.
We remark that equation 4.1 also describes the eigenvalues of non-self-adjoint operators

(when γ are complex) on graphs with complex lengths. The latter are taken care of by an
appropriate rescaling.

4.3. Secular manifold. An equation giving the eigenvalues of a particular graph is often
called the secular equation, after [133]. In many cases, the secular equation is a trigonometric
polynomial that depends on

√
λ only in combination with edge lengths. In fact, this is true for

any Laplacian ∆VD
G , including VD = ∅, with one important caveat [37, 133, 130].

Proposition 4.1. For every graph G there is a multivariate polynomial p ∈ C[z1, . . . , zE] such
that λ = k2 > 0 is an eigenvalue of ∆VD

G if and only if

(4.2) p(eikℓ1 , . . . , eikℓE) = 0.

The multiplicity of the eigenvalue is equal to the algebraic multiplicity of the root.
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There is a simple way to compute the polynomial p for any graph via the so-called bond
scattering matrix, see [133] or [49, Sec. 2.1.2]. Equation (4.2) has only real roots (which makes
it a Lee–Yang polynomial [11]), but the multiplicity of the root at zero does not match the
multiplicity of 0 as the eigenvalue of ∆VD

G [148]. We illustrate it in the following example.

Example 4.2. Consider a lasso graph with a Dirichlet condition at the vertex of degree 1.
Following a standard procedure [41, Sec. 5.1] one can show its secular polynomial equation
(4.2) to be
(4.3) 2 sin(kℓ1)(cos(kℓ2)− 1) + cos(kℓ1) sin(kℓ2) = 0,

where ℓ1 is the length of the handle and ℓ2 is the length of the loop. Because of the Dirichlet
condition, the operator is strictly positive. In other words, it has no eigenvalue zero despite
k = 0 being a root of equation (4.3).

The particular form of equation (4.2) lead Barra and Gaspard [31] to view it as intersection
times of the flow k 7→

(
eikℓ1 , . . . , eikℓE

)
on the torus TE := {|z1| = . . . = |zE| = 1} with the

secular manifold Σ defined6 by
(4.4) Σ :=

{
(z1, . . . , zE) ∈ TE : p(z1, . . . , zE) = 0

}
.

An illustrative example of the secular manifold is shown in Fig. 11 for the lasso graph from
Example 4.2. Here the torus is parametrized as T2 = (R/2πZ)2 and the secular manifold is the
set of solutions (κ1, κ2) of
(4.5) 2 sin(κ1)(cos(κ2)− 1) + cos(κ1) sin(κ2) = 0.

For a generic choice of edge length ℓ1, . . . , ℓE, the flow wraps around the torus covering it
uniformly — this is known as the Weyl equidistribution [208]. Therefore, if one is interested in
a spectral average (i.e., an average over many eigenvalues) of a quantity that can be read off
Σ, one can instead integrate over Σ with an appropriate measure: the Barra–Gaspard measure
[31, 53, 82, 9]. It is the cross-sectional measure of the sets on Σ, i.e., the measure of the
projection of the given set onto the hyperplane normal to the vector (ℓ1, . . . , ℓE).

What interesting spectral quantities can be computed from a point on Σ? Here is a partial
list

• the distance to the next eigenvalue — the “nearest neighbor spacing” [31],
• the distribution of the eigenfunction L2 norm between the graph’s edges [53, 82],
• the distance of a resonance from the real axis [44],
• the number of zeros of the eigenfunction [9] — via the nodal–magnetic connection [52],
• the distance to the corresponding eigenvalue of a perturbed graph [190] — even in the

non-selfadjoint setting.
This idea can be also extended beyond the integration over Σ to yield, for example, the Weyl
asymptotics of Proposition 3.16 or the the probability that a randomly chosen positive energy
lies in the spectrum of an infinite periodic graph [22, 30, 29].

6It is apparent from the definition that Σ is not a manifold but an algebraic variety, but the term “secular
manifold” is now standard.
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0 1.5708 3.14159 4.71239 6.28319
0

1.5708

3.14159

4.71239

6.28319

Figure 11. The secular manifold Σ (blue) corresponding to the lasso graph of
Example 4.2 shown on the torus TE = (R/2πZ)E and intersected by the flow
k 7→ (k, k

√
3) (which corresponds to edge lengths of the tadpole being ℓ1 = 1

and ℓ2 =
√
3. The intersection points are marked with circles and correspond

numerically to k = 0.6604, 2.6953, 3.6276, 4.0539, 6.0173.

4.4. Setting edge lengths to zero. The case of zero lengths is notably absent from the state-
ment of analyticity, equation (4.1). In the most general setting, convergence of the spectrum
(and/or the resolvent) is a delicate issue [50, 66, 58], as in some cases the limiting graph has
vertices with internal structure [79].

The most basic example showing that one must be careful is provided by the graph consisting
of two disjoint intervals, one with Neumann and one with Dirichlet conditions. If the length
of the Neumann interval tends to 0, the naive limiting graph is just the Dirichlet interval. But
this “limiting operator” has no eigenvalue zero which is present for all non-zero values of the
lengths. For other, more exotic, examples the reader is referred to [50, 43, 42].

However, in the case of the operator ∆γ
G, all relevant spectral quantities (eigenvalues, eigen-

functions and the resolvent) do converge to what is intuitively the limiting graph [26, 66, 58],
in the appropriate sense and under the following conditions (see [50, Lem 3.4]): the graph G
is connected, not all edges are shrunk to zero. We remark that in the limiting graph, the γ
coefficient on a vertex v that is the result of a merger of vertices v1, . . . , vr is obtained from the
condition

(4.6) tan(γv) =
r∑
j=1

tan(γvj).
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Under the above conditions, it is tempting to compute the secular manifold of the limiting
graph G̃ by setting to zero the relevant variables in the secular manifold of the original graph
G. Unfortunately, this does not work as shown, again, by the tadpole graph: setting ℓ2 to zero
makes the secular trigonometric polynomial (4.3) identically zero.

To the best of our knowledge, it is not known whether the similar procedure works for the
analytic function ΦG̃, postulated in section 4.2.

4.5. Simplicity of the spectrum. Similar to the classical results for Laplace operator on
domains and manifolds [205, 206], the eigenvalues of the graph operator ∆γ

G are generically
simple and the eigenfunctions have full support (i.e., do not vanish entirely on any edge) —
except for the eigenfunctions supported on a loop. The generic (in the Baire sense) simplicity
of the eigenvalues was established in [98]. It was extended to include δ-type vertex conditions
and to yield generic full support of eigenfunctions in [51]. The applicable notions of genericity
were further strengthened [6] for graphs with standard conditions.

We state the theorem in the formulation of [51], since the result applies to graphs with
standard, Dirichlet, or δ-conditions given by (3.36).

Theorem 4.3. Let G be a compact connected graph with some fixed choice of vertex parameters
γ and with at least one vertex of degree other than 2 (i.e., G is not a circle). Then the properties

(i) every eigenvalue of ∆γ
G is simple, and

(ii) for each eigenfunction f of ∆γ
G,

(a) either f(v) ̸= 0 for each vertex v, or
(b) f is supported on only one loop of Γ

hold for the set of choices of edge lengths (ℓ1, . . . , ℓE) ∈ RE+ that is residual in RE+ (i.e., its
complement is a meager set — a countable union of nowhere dense sets).

Naturally, if the graph G has no loops, the case (iib) never occurs.
How bad can the eigenfunctions get in the non-generic case? If the edge lengths are rationally

independent, there is a non-zero proportion of eigenfunctions of full support [8]. The same
conclusion holds when the lengths are all proportional to a rational number [111]. Remarkably,
for an arbitrary metric graph, we do not even know if there are infinitely many of eigenfunctions
of full support: the following conjecture, put forward in [111], is still open.

Conjecture 1. For any metric graph and any choice of a complete orthonormal sequence of
eigenfunctions, there are infinitely many eigenfunctions with full support.

The following partial solution can be found in [185].

Theorem 4.4. Let G be a metric tree, or else let VD ̸= ∅. Then there exists a strictly increasing
sequence of eigenvalues of multiplicity one and a sequence of corresponding eigenfunctions
(ψk)k∈N of −∆G (resp., of −∆VD

G ), so that each ψk does not vanish at the vertices of G (apart
from VD)

Some further ideas were proposed in [140] and [6, Sec. 7.2].
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5. Global methods

5.1. Symmetrization. Lemma 6.2 is sufficient to prove the following: this is the earliest result
in spectral geometry of quantum graphs. We will recurrently recall it and use it as a field of
application of new methods we wish to introduce.

Theorem 5.1. Let G be a metric graph of total length |G|. Then the following assertions hold.
(1) The lowest positive eigenvalue of the Laplacian ∆G satisfies the estimate

(5.1) µ2(G) ≥
π2

|G|2
if VD = ∅,

and

(5.2) λ1(G;VD) ≥
π2

4|G|2
if VD ̸= ∅.

In both cases there is equality if and only if G is an interval, equipped with Neumann–
Neumann conditions in (5.1), and mixed Dirichlet–Neumann conditions in (5.2).

(2) If, additionally, G is doubly edge connected, then

(5.3) µ2(G) ≥
4π2

|G|2
if VD = ∅,

and

(5.4) λ1(G;VD) ≥
π2

|G|2
if VD ̸= ∅.

In both cases there is equality if and only if G is a symmetric necklace with pure standard
conditions if (5.3) holds, and in particular at both antipodal points; or with a Dirichlet
condition at one antipodal point and standard conditions elsewhere.

Here, we call a metric graph with VD = ∅ doubly edge connected if no one cut in any interior
point of any edge is sufficient to make G disconnected (so, a flower graph is doubly edge
connected, but a tree graph or a lasso graph are not); in the case of VD ̸= ∅, this definition is
slightly modified by stipulating that all vertices in VD are identified before counting (as above)
the number of cuts that are necessary to make the graph disconnected.

The assertions in Theorem 5.1.(1) were originally discovered in [176] and rediscovered, gen-
eralized and sharpened several times, by different authors and with different proof techniques:
we are going to focus on the proof delivered in [98, Theorem 1 and Lemma 3] for (5.1) and (5.2),
respectively.

Based on the proof of Theorem 5.1.(1) delivered in [98], the estimates for the case of higher
connectivity have been studied in [26, Theorem 2.1(2)] (inequality (5.3)) and in [45, Lemma 4.2]
(inequality (5.4)), respectively. (A slightly sharper version of (5.3), also valid for homogeneous
nonlinear operators, is proven in [45, Theorem 3.4].)

In view of its importance, we will present a fairly detailed proof of Theorem 5.1. We will
begin by proving (5.2); (5.1) will be discussed at the end of this section, as an application of
nodal geometry.
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Proof. We begin by proving (5.2). We may, without loss of generality, assume G to be connected
after removal of all Dirichlet vertices.

Denote by ψ1 an eigenfunction corresponding to λ1(G;VD): in view of Proposition 3.17
and the the Krĕın–Rutman Theorem we deduce that ψ1 is strictly positive a.e. – and in fact,
even everywhere outside VD, see [139]. Let for notational simplicity L := |G| and construct a
symmetrised (or rearranged) function ψ∗

1 on I = [0, L] as follows.
We first define the upper level sets of ψ1 by

Ut := {x ∈ G : ψ1(x) > t}, t ≥ 0;

then t 7→ |Ut| (the total length of Ut) is a monotonically decreasing function from L at t = 0
to 0 at t =M := maxx∈G ψ1(x). We will also denote by

(5.5) St := {x ∈ G : ψ1(x) = t}, t ≥ 0,

the corresponding “level surfaces”, St = ∂Ut for t ∈ (0,M), which in reality will generally be
finite sets of points.

We define a function ψ∗
1 : [0, L] → [0,M ], the decreasing rearrangement of ψ1, by the rule

ψ∗
1(x) := t if and only if x = |Ut|, x ∈ [0, L].

It is defined in such a way that its upper level sets have the same total length as the upper
level sets of ψ1:

(5.6) |U∗
t | = |{y ∈ [0, L] : ψ∗

1(y) > t}| = x = |Ut| = |{y ∈ G : ψ1(y) > t}|.
Thus ψ∗

1 is monotonically decreasing in x (since |Ut| is monotonically decreasing in t), with
ψ∗
1(0) =M and ψ∗

1(L) = 0, see Figure 12.

M

0 L

ψ∗
1

x = |Ut|

t

Figure 12. The rearranged function ψ∗
1 on [0, L].

One sees that ψ∗
1 ∈ H1(0, L), while Cavalieri’s principle (using (5.6)) implies that ∥ψ∗

1∥L2(0,L) =

∥ψ1∥L2(G). Furthermore, the coarea formula implies that
∫
G |ψ

′
1|2 dx ≥

∫ L
0
|(ψ∗

1)
′|2 dx.

By the coarea formula, ∫
G
φ(x)|ψ′

1(x)| dx =

∫ M

0

(∑
x∈St

φ(x)

)
dt,
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part of the assertion being that the integrand on the right-hand side is in fact integrable. Before
we proceed, we also make two observations: first,

∑
x∈St

|ψ′
1(x)| ≥

(∑
x∈St

1

|ψ′
1(x)|

)−1

almost everywhere (also noting that ψ′
1(x) can vanish or be undefined only on a null set), since

(5.7)
∑
x∈St

1

|ψ′
1(x)|

∑
y∈St

|ψ′
1(y)| ≥

∑
x,y∈St

1

|ψ′
1(y)|

≥
∑
x∈St

1 = #St,

where, for a.e. t ∈ (0,M), #St ≥ 1. Secondly, if yt ∈ [0, L] is the unique point such that
ψ∗
1(yt) = t, i.e., {yt} = S∗

t = ∂U∗
t , then the relation |Ut| = |U∗

t | implies∑
x∈St

1

|ψ′
1(x)|

=
∑
y∈S∗

t

1

|(ψ∗
1)

′(y)|
=

1

|(ψ∗
1)

′(yt)|

for almost all t ∈ [0,M ]. With these two observations, we can give the main calculation:∫
G
|ψ′

1(x)|2 dx =

∫ M

0

∑
x∈St

|ψ′
1(x)| dt

≥
∫ M

0

1∑
x∈St

1
|ψ′

1(x)|
dt

=

∫ M

0

1

1/|(ψ∗
1)

′(yt)|
dt

=

∫ M

0

|(ψ∗
1)

′(yt)| dt =
∫ L

0

|(ψ∗
1)

′(y)|2 dy,

where the first line is the coarea formula, the second follows from the first observation, the third
from the second observation, and the final line is another application of the coarea formula.

The proof of (5.2) now follows as with the theorem of Faber–Krahn in Rd: since ψ∗
1(L) = 0,

λ1(G;VD) =

∫
G |ψ

′
1|2 dx∫

G |ψ1|2 dx
≥
∫ L
0
|(ψ∗

1)
′|2 dx∫ L

0
|ψ∗

1|2 dx
≥ inf

0̸=u∈H1(0,L)
u(L)=0

∫ L
0
|u′|2 dx∫ L

0
|u|2 dx

= λND1 (0, L) =
π2

4|G|2

by (2.4). This concludes the proof for general metric graphs G. If G is doubly connected, the
proof of (5.4) is performed along the same chain of inequalities, and in particular (5.7), but
using the improved estimate #St ≥ 2 for a.e. t ∈ (0,M).

As announced, the proof of (5.1) and (5.3) is postponed to Section 5.3.2. □



D
ra

ft

LAPLACIANS ON METRIC GRAPHS: METHODS OF SPECTRAL GEOMETRY 33

5.2. Test functions. When it comes to producing an upper counterpart of the lower bound
in the previous section, there are two main paths we can follow. We can either apply surgical
principles that modify in a controlled way the structure of the graph, eventually leading to
a configuration that can be easily studied: this will be the guideline in Chapter 6. Else,
we can use the the variational characterization of eigenvalues: by the Min-max Theorem, the
lowest positive eigenvalue µ2 of the Laplacian with standard vertex conditions is the infimum of
the Rayleigh quotient over the class of H1(G)-functions that are orthogonal to the constants;
furthermore, this infimum is attained (and, hence, it is a minimum) if and only if the test
function is an eigenfunction.

Accordingly, to find an upper bound on µ2 it suffices to find a test function (not necessarily
an eigenfunction!) and compute its Rayleigh quotient. For instance, such a test function could
be a full sine wave supported on a longest edge in the graph, leading to the estimate

(5.8) µ2(G) ≤
4π2

ℓ2max

;

or else, considering a longest and a second-longest edges e1, e2 in G, then considering the full
sine wave supported on e1, e2 (more precisely: considering its positive part on e1 and its negative
part on e2, extending to the whole graph by 0, and adjusting the amplitude of the two waves
to guarantee that the whole function is orthogonal to 1) leads to

f(x) :=

{
sin(πx

ℓ1
) if x ∈ e1,

− ℓ1
ℓ2
sin(πx

ℓ2
) if x ∈ e2,

and eventually at the estimate

(5.9) µ2(G) ≤
4π2

(ℓ1 + ℓ2)2
.

Alternatively, instead of searching one test function, we may well consider a whole family
of H1(G)-functions whose Rayleigh quotient can be uniformly (and easily!) estimated, and
then showing that it contains at least one admissible test function. A possible situation when
one might want to do so is the following: Assume that G is subdivided in k mutually disjoint,
connected metric subgraphs G1, . . . ,Gk in such a way that

Λk,∞(P) := max
1≤j≤k

λ1(Gj, ∂Gj)

is minimal among all possible such k-partitions P of G, where ∂Gi is the set Gi ∩
⋃
j ̸=i Gj.

(That such a spectral minimal partition exists is not obvious, but has been proved in [118].)
Now, upon taking the ground state ψj on each such Gj, one may consider

∑k
j=1 ψj: while

this function belongs to H1(G), it will not be an admissible test function as it is positive and,
hence, certainly not orthogonal to the constants. However, one may look for a suitable linear
combination

ψα :=
k∑
j=1

αjψj ̸= 0
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such that
∫
G ψα(x) dx = 0. The task of finding such a vector α ∈ Rk can be easily accomplished,

as it boils down to solving an algebraic system. In this way, one may use of known estimates on
the spectral minimal energy Λk,∞(P) to derive upper estimates on µk: in this way, the estimate

(5.10) µk(G) ≤
π2

|G|2

(
k − 1 + E −

⌊
N

2

⌋)2

for k large

has been obtained in [110]: here N is the number of vertices of degree 1 and E is, as usual, the
number of edges. (We will encounter similar but more sophisticated estimates in Section 6.2.)

Here comes a “non-linear version” of this methods: it is taken from [47], as are its conse-
quences.

Corollary 5.2. Let ψ· : [0, 1] → H1(G) \ {0} be such that ψ0 = −ψ1 and the mapping t 7→
⟨ψt,1⟩L2(G) is a continuous function [0, 1] → R. Then there exists t0 such that

(5.11) µ2(G) ≤

∥∥ψ′
t0

∥∥2
L2(G)

∥ψt0∥
2
L2(G)

.

Let us present a few applications of this basic method.

Proposition 5.3. There holds

(5.12) µ2(G) ≤
24|G|

Diam(G)3
.

Proof. Introduce the “tent” function

(5.13) τy,d(x) =

{
d− dist(x, y), if dist(x, y) ≤ d,

0, otherwise,

let d = Diam(G)/2, and take

(5.14) ψt := cos(πt)τx1,d + sin(πt)τx2,d,

where x1 and x2 are a pair of points on the graph realizing the diameter. Note that τx1,d
and τx2,d have disjoint supports. Then ψt satisfies the conditions of Corollary 5.2 and we can
estimate ∥∥τ ′x1,d(x)∥∥2L2(G) ≤

∫
x : dist(x,x1)≤d

1dx ≤ L,

and

(5.15) ∥τx1,d(x)∥
2
L2(G) ≥

∫ d

0

(d− x)2dx =
d3

3
,

where we estimate the L2-norm by only integrating along the path realizing the diameter.
Combining, we obtain the desired estimate

µ2 ≤
cos2(πt)L+ sin2(πt)L

cos2(πt)Diam(G)3
24

+ sin2(πt)Diam(G)3
24

≤ 24L

Diam(G)3
.
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Since our test function cannot possibly be an eigenfunction, being piecewise linear, the inequal-
ity is strict. □

Using the same technique, but a more sophisticated class of test functions, the following can
be proved, where we use the notations from Definition 3.21.

Proposition 5.4. There holds

(5.16) µ2(G) ≤
6|G|

(AvDiam(G))3
.

and

(5.17) µ2(G) ≤
12|G|

(Triam(G))3
.

5.3. Graph decomposition. In Section 5.1 we have reviewed some isoperimetric inequalities
obtained by symmetrization methods: however theoretically and historically important, their
proofs are based on “spreading around” the mass distribution of the ground state all over the
metric graph, without respecting its fine structure.

Let (Gi)1≤i≤N be a family of mutually disjoint metric subgraphs of G such that G =
⊔N
i=1 Gi:

accordingly,

∥f ′∥2L2(G) =
N∑
i=1

∥f ′∥2L2(Gi)
and ∥f∥2L2(G) =

N∑
i=1

∥f∥2L2(Gi)
.

Because the restriction to each Gi of any eigenfunction φ on G is again a valid test function for
the Rayleigh quotient on Gi, we apply the Poiincaré inequality to each Gi and deduce that

(5.18) ∥φ′∥2L2(G) ≥ min
1≤i≤N

λ1(Gi; ∂Gi)∥φ∥2L2(G),

if φ can be guaranteed to vanish on a suitable subset ∂Gi of each Gi: for instance because each
Gi contains at least one Dirichlet vertex, or else because Gi are designed on purpose in such a
way that the eigenfunctions vanish at all kissing points Gi ∩ Gj.

A refinement of the lower estimates in Section 5.1 can, thus, be obtained if G is conveniently
decomposed into metric subgraphs Gi that allow for enhanced eigenvalue bounds: either be-
cause of their geometry (say, because we choose Gi to be fairly homogeneous with respect to
some relevant quantity) or because of the spectral properties of the Laplacian restricted to
such subgraphs (e.g., because the subgraphs are designed to mirror some properties of the
eigenfunctions on G). In this section we are going to discuss three approaches to this general
method.

5.3.1. Voronoi cells. The first method we present here is based on the notion of Voronoi de-
composition that has been developed for combinatorial graphs in [154] and suitably adapted
to metric graphs in [183].

The following refinement of Corollary 3.22 is [183, Theorem 4.5.11].
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Theorem 5.5. Let G be a compact metric graph with total length |G| and inradius Inr(G;VD)
with respect to some ∅ ≠ VD ⊂ V. Then

λ1(G;VD) ≥
1

sup
v∈VD

|B(v, Inr(G;VD)) Inr(G;VD)
.

In the proof, we are going to decompose G into a family (Gi)1≤i≤N ≡ (Uv)v∈VD
of Voronoi

cells: let us introduce this notion.

Definition 5.6. Let ∅ ̸= VD ⊂ V. A family (Uv)v∈VD
of metric subgraphs of G is called a

Voronoi decomposition with respect to VD if the following conditions are satisfied:
• Let v ∈ VD. Then v ∈ Uv and for any further x ∈ Uv there exists a geodesic γ ⊂ G

whose endpoints are x, v and whose trace lies in Uv.
• Let v,w ∈ VD and x ∈ Uv. If v ̸= w, then distG(v, x) ≤ distG(w, x).
• Let v,w ∈ VD. If v ̸= w, then Uv ∩ Uw has empty interior.

Roughly speaking, such a family (Uv)v∈VD
decomposes G into a mutually disjoint metric

subgraphs in such a way that each element of Uv is closer to v ∈ VD than to any further
w ∈ VD. It is not at all obvious that a Voronoi decomposition of any given G always exists:
indeed, proving that such decomposition is based on a delicate application of the Zorn’s Lemma
[183, Theorem 4.5.6].

Example 5.7. Unlike in the case of domains, a Voronoi decomposition is generally not unique.
Let G be a metric star consisting of three equilateral edges e1, e2, e3 with centrum v0 (the
center of the star) and leaves v1, v2, v3. If VD = {v1, v2}, then there are precisely two Voronoi
decompositions of G: either Uv1 consists of e1, e3 and Uv2 consists of e2, or Uv1 consists of e1
and Uv2 consists of e2, e3.

Proof. Decomposing G into Voronoi cells (Uv)v∈VD
also allows for a decomposition of the nu-

merator and the denominator of the Rayleigh quotient:

∥f ′∥2L2(G) =
∑
v∈V

∥f ′∥2L2(Uv)
and ∥f∥2L2(G) =

∑
v∈V

∥f∥2L2(Uv)
,

where the Dirichlet boundary of each Uv is the singleton {v}. We can now observe that for
each such cell

∥f ′∥2L2(Uv)
≥ 1

|Uv| Inr(Uv; {v})
∥f∥2L2(Uv)

≥ 1

B(v; Inr(G;VD)) Inr(Uv; {v})
∥f∥2L2(Uv)

,

where the second inequality follows by general properties of Voronoi decompositions (and,
indeed, holds uniformly with respect to any Voronoi decomposition!). The claim then follows
summing over all cells. □

5.3.2. Nodal domains. To prove (5.1) using this approach, we apply (5.2) to each nodal domain
of the second eigenfunctions. This idea is very effective, so we will elaborate on it.

Definition 5.8. Let φ ∈ C(G). We call
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(a) the closed set N(φ) := {x ∈ G : φ(x) = 0} the nodal set of φ;
(b) Ω ⊂ G a nodal domain of φ if it is the closure of a connected component of G \N(φ).

Example 5.9. If G = I = [0, L] is just a bounded interval, and ψk ∼ λk is a kth eigenfunction
of − d2

dx2
+ q on I (q ∈ L∞(I)), then by Sturm–Liouville theory, ψk has exactly k − 1 zeros in

the interior of I, and thus exactly k nodal domains Ω1, . . . ,Ωk.
As a more explicit example, if q = 0 and k = 2, then ψ2(x) = A cos(πx

L
) is an eigenfunction

for λ2 = π2

|G|2 ; N(ψ2) = {L
2
} (independently of A ̸= 0), and so Ω1 = [0, L

2
], Ω2 = [L

2
, L].

Remark 5.10. If k ≥ 2, then ψk ∼ µk(G) changes sign on G (since it is orthogonal in L2(G) to
the function ψ1, which is positive everywhere). In particular, if k = 2, then there exist nodal
domains Ω+ and Ω− where ψk is positive and negative, respectively.

The following is [117, Lemma 2.3].

Lemma 5.11. Suppose ψk is an eigenfunction for λk(G) on G and Ω ⊂ G is any nodal domain
of ψk. Denote by λ1(Ω; ∂Ω) the first eigenvalue of the Laplacian on Ω with Dirichlet conditions
on ∂Ω and standard conditions at all other vertices, i.e.,

λ1(Ω) = inf
0̸=u∈H1(Ω)
u(x)=0∀x∈∂Ω

∫
Ω
|u′|2 dx∫

Ω
|u|2 dx

.

Then λk(G) = λ1(Ω; ∂Ω) and ψk|Ω is an eigenfunction for λ1(Ω; ∂Ω).

Proof. By assumption ψk satisfies the eigenvalue equation −ψk = µkψk strongly (indeed point-
wise) in G, and hence in Ω. But it also satisfies all vertex conditions in Ω by construction.
Thus it is equal to some eigenfunction on Ω; in particular, µk = λj(Ω) for some k ≥ 1.

Now since ψk does not change sign in Ω, and λ1(Ω) is the only eigenvalue on Ω with a
non-sign-changing eigenfunction, we must have j = 1. □

We can finally complete the proof of Theorem 5.1.

Proof of (5.1). Fix an eigenfunction ψG
1 ∼ λ1(G), then ψ1 has (at least) two nodal domains

Ω+, Ω−; at least one of them, say Ω+, has total length ≤ |G|/2. Since ∂Ω+ ̸= ∅, i.e., Ω+ has at
least one Dirichlet vertex, by Lemma 5.11 and (5.3), there holds

λ1(G) = λ1(Ω
+) ≥ π2

4|Ω+|2
≥ π2

|G|2
.

We can prove (5.3) likewise. □

The symmetrization method allows for a generalization of the inequality to the higher eigen-
values, as proved in [98, Theorem 1].

Theorem 5.12. If VD = ∅, then the k-th-lowest eigenvalue satisfies

(5.19) λk(G) ≥
π2(k + 1)2

4|G|2
for all k ≥ 1.

Equality is attained in (5.19) if and only if G is an equilateral k-star.
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N D

|G|
k

k copies

Proof. If ψk has k nodal domains, then at least one has length ≤ L/k; apply Theorem 5.1 (in
the version for VD ̸= ∅). Otherwise, there exists a linear combination of ψ1, . . . , ψk which does
have k nodal domains. Apply the symmetrization technique to one of these. □

If G is not a tree, a lower bound on λ1 in terms of diameter only is impossible, as shown
in [119, Example 5.1]; see Proposition 6.7 for the case of trees. However, the following lower
bound holds [183, Theorem 4.4.6].

Proposition 5.13. If VD = ∅, then

(5.20) µk ≥
νk

|G|Diam(G)
for all k ≥ 2,

where νk is the number of nodal domains of an eigenfunction associated with µk.

Proof. Let ψk be an eigenfunction associated with µk: then by Lemma 5.11 the restriction of
ψk to each of its nodal domains Ωi, i = 1, . . . , νk is the ground state of the Laplacian with
Dirichlet conditions at the boundary of ∂Ωi and we can apply Corollary 3.22 to each of the
nodal domains. We conclude that

λk(G) ≥
1

|Ωj| Inr(Ω; ∂Ωj)
≥ νk

|G|Diam(G)
,

where the last inequality follows from the pidgeonhole principle and the obvious estimate
Inr(G̃;VD) ≤ Diam(G̃), which holds for all graphs G̃. □

Because any eigenfunction associated with µ2 has certainly two nodal domains, one deduces
in particular the estimate

(5.21) µ2 ≥
2

|G|Diam(G)
.

5.3.3. Double covers. The starting point of a further approach to decompositions is (5.18). If
φ does not necessarily disappear at the boundary of each ∂Gi, then we have to resort to the
Poincaré-Wirtinger inequality to find

∥φ′∥2L2(Gi)
≥ µ2(Gi)

∫
Gi

(
φ(x)−−

∫
Gi

φ

)2

dx :



D
ra

ft

LAPLACIANS ON METRIC GRAPHS: METHODS OF SPECTRAL GEOMETRY 39

now, by the Jensen inequality and summing over i, we deduce

(5.22) ∥φ′∥2L2(G) ≥ min
1≤i≤N

µ2(Gi)

(
∥φ∥2L2(G) −

N∑
i=1

1

|Gi|

(∫
Gi

φ(x) dx

)2
)
.

Alas, the restriction of φ to Gi need not have zero mean, hence it is generally not a valid test
function for the Rayleigh quotient on Gi. A way to circumvent this problem, based on the
notion of cover of G, has been proposed in [14] and later generalized in [170]. Unlike in the
previously considered decompositions of G, we remove the condition that the cells are mutually
disjoint; on the contrary, we assume that almost each point of G belongs to precisely m different
cells.

Definition 5.14. Let m ∈ N. An m-fold cover of a metric graph G is a finite family (Ui)1≤i≤N
of connected metric subgraphs of G such that for almost every x ∈ G there exist m distinct
indices 1 ≤ i1 < . . . < im ≤ N such that x ∈ Ui1 ∩ . . . ∩ Uim and x ̸∈ Ui for i /∈ {i1, . . . , im}.

The associated vicinity graph Γ is a simple weighted graph with vertex set {1, . . . , N} and
edge weights µij := |Ui ∩ Uj| for vertices i ̸= j and µii = 0.

We denote by αi(LΓ) the i-th-lowest eigenvalue of the normalized Laplacian LΓ, defined e.g.
as in [80, Chapter 1]:

LΓ := IMI :

here M is the diagonal matrix that contains the weights of Γ and I is the signed incidence
matrix of an arbitrary orientation of Γ. The following was obtained in [14, Theorem 1.2] for
m = 2 and in [170, Theorem 2.1] for general m.

Theorem 5.15. Let G be a metric graph. Given an m-fold cover (Ui)1≤i≤N of G with associated
vicinity graph Γ, we have

(5.23) µi(G) ≥
m− 1

m
αi(LΓ) min

1≤j≤N
µ2(Uj), i = 1, . . . , N.

Proof. We consider the linear bounded operator Φ : L2(G) → RN given by

(Φf)i :=
1√
|Ui|

∫
Ui

f dx, i = 1, . . . N.

Using the Min-max Theorem and because (Ui)1≤i≤N is an m-fold cover of G, one can show that

µi(G) ≥
1

m
αi(m IdRN −ΦΦ∗) min

1≤j≤k
µ2(Uj), i = 1, . . . N

where Φ∗ is the adjoint of Φ and αi(IdRN −ΦΦ∗) denotes the i-th-lowest eigenvalue of the
operator m IdRN −ΦΦ∗. The entries of ΦΦ∗ with respect to Cartesian coordinates on RN are

(ΦΦ∗)ij =
|Ui ∩ Uj|√
|Ui| |Uj|
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and, thus, (mI − ΦΦ∗)ii = m− 1 and

(mI − ΦΦ∗)ij = − |Ui ∩ Uj|√
|Ui| |Uj|

= −(m− 1)
µij√
dµi d

µ
j

for i ̸= j, because (Ui)1≤i≤N is an m-fold cover. Therefore,

m IdRN −ΦΦ∗ = (m− 1)D− 1
2IMID− 1

2 ,

where D denotes the diagonal matrix of weighted vertex degrees. Because

µi(G) ≥
1

m
αi(m IdRN −ΦΦ∗) min

1≤j≤N
µ2(Uj)

the claim follows, once we observe that the normalized Laplacian LΓ and its symmetric version
L̃Γ := D− 1

2IMID− 1
2 have same eigenvalues. □

The simplest application of Theorem 5.15 is obtained upon considering the so-called star
double cover (Sv)v∈V of G: each Sv consists of the vertex v ∈ V and of all incident edges,
i.e., Sv = Ev. We can thus apply Theorem 5.15 for m = 2 and obtain the following, cf. [14,
Theorem 3.4].

Corollary 5.16. Let G be a metric graph. We have

(5.24) µi(G) ≥
π2

8ℓ2max

αi(LG), i = 1, . . . , V,

where αi(LG) is the i-th-lowest eigenvalue of the normalized Laplacian LG of the weighted
combinatorial graph G underlying G, with edge weights µe := ℓe.

Proof. Applying Theorem 5.15 with Uv := Sv we deduce

µi(G) ≥
1

2
αi(LG)min

v∈V
µ2(Sv), i = 1, . . . , V,

The right-hand side can be further estimated using

µ2(Sv) ≥
π2

4ℓ2max

for all v ∈ V,

which follows combining Corollary 6.12.1 below with (3.13). □

6. Local Methods

Not only can eigenvalues be described by means of the Courant–Fischer Minmax Principle: a
fundamental consequence of the description of the Laplacians with standard vertex conditions
(with or without Dirichlet vertices) in terms of quadratic forms is that surgical operations on
the metric graph have a functional analytical counterpart as operations on the form domain.

In this section we wish to explore surgery methods. Surgery is primarily a tool to modify
metric graphs in order to produce new graphs whose spectrum (as a whole, or perhaps in terms
in individual eigenvalues) is behaving in a consistently monotone way. Ideally, the spectral
theory of the target graph will be easier to perform.
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6.1. Elementary surgery methods. We wish to explore the related principle that loosening
connections, or “cutting through the graph” lowers the eigenvalues. This is a prototypical
surgery principle: examining how making a local topological, geometric or metric change to
a graph (“surgery”) affects its Laplacian spectrum. Some such principles were implicit in the
works of Nicaise [176] and Friedlander [98], but only started being studied systematically in
the 2010s with [48, 146]. The standard reference is now probably [46].

6.1.1. Rank-one perturbations.

Definition 6.1. We say G̃ is formed from G by cutting through the vertex v ∈ V(G) if v

is replaced by p ≥ 2 vertices v1, . . . , vp ∈ V(G̃) such that all other incidence and adjacency
relations are preserved. In this case the rank of the cut is defined to be p− 1.

v v1

v2 or
v1 v3

v2

Figure 13. Two examples of cutting through a vertex of degree 6. The first
(center) has rank 1; the second (right) has rank 2, and is also a rank 1 cut of the
first.

The inverse process is called gluing vertices.

This notion is reflected at the level of function spaces.

Lemma 6.2. Let G be a metric graph and let G̃ be the metric graph obtained gluing p distinct
vertices v1, . . . , vp of G to form v0. Then up to a canonical identification C(G) is a subspace of
C(G̃) of codimension p− 1. Accordingly, the same is true of H1(G) and H1(G̃); and of H1

0 (G̃)
and H1

0 (G), as long as standard conditions are imposed at all of v0, . . . , vp.

More precisely, we can define a natural isomorphism Φ : L2(G) → L2(G̃) via the identification

L2(G) ≃
⊕
e∈E

L2(0, ℓe) ≃ L2(G̃),

where E is the common set of edges of the two graphs. Moreover, if f ∈ C(G) (in particular
if f ∈ H1(G)) satisfies f(v1) = . . . = f(vm), then also Φ(f) ∈ C(G̃) (correspondingly, Φ(f) ∈
H1(G̃)).

Also note that by inserting dummy vertices as necessary we can thus cut/glue any p points
in the graph.

Now a rank r ≥ 2 cut (or gluing) can easily be defined by concatenating r rank-1 cuts (see
also [109, Section 2.2]), so it makes sense to analyze rank-1 operations as the base case. Here,
Lemma 6.2 translates into the following interlacing inequality for the eigenvalues of the standard
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Laplacian, although Dirichlet (or other self-adjoint) vertex conditions may be imposed at any
vertices not affected by the gluing. The following can be traced back to [46, Corollary 3.4] and
also [49, Theorems 3.1.8 and 3.1.10] as well as [144, 192].

Theorem 6.3. If the graph G̃ is obtained from G by gluing two vertices, then their eigenvalues
satisfy the interlacing inequalities

(6.1) λk(G) ≤ λk(G̃) ≤ λk+1(G) ≤ λk+1(G̃), k ≥ 1.

If a given value Λ has multiplicities m and m̃ in the spectra of G and G̃, respectively, then
|m − m̃| ≤ 1 and, with the identification just described, the intersection of the respective Λ-
eigenspaces has dimension min(m, m̃).

The following immediate consequence was observed in [46, Corollary 3.6].

Corollary 6.4. Suppose v1, . . . , vm ∈ V(G) and for some k ≥ 1 there exist eigenfunctions
ψ1, . . . , ψk corresponding to λ1(G), . . . , λk(G), respectively, such that

ψ1(v1) = . . . = ψ1(vm), . . . , ψk(v1) = . . . = ψk(vm).

Let G̃ be the graph formed from G by gluing v1, . . . , vm. Then

λ1(G̃) = λ1(G), . . . , λk(G̃) = λk(G).

Moreover, ψ1, . . . , ψk are eigenfunctions on G̃ associated with λ1(G̃), . . . , λk(G̃), respectively.

Example 6.5. A surprising consequence of Corollary 6.4 is that all figure-8 graphs of same total
length are “semi-co-spectral”: by this we mean that the half of their eigenvalues agree: more
precisely, 4k2π2

|G|2 is an eigenvalue of all of them for each k = 1, 2, . . ..
Indeed, let G be a loop. Then ∆G is nothing but the second derivative with periodic boundary

conditions on the interval [0, |G|], whose eigenfunctions are given by (2.6). Each eigenfunction
associated with λk attains each of its values 2k times: in particular, by the translation symmetry
of ψk := cos(

√
λk·) we can regard any two points of G as vertices where ψk attains the same

value: gluing them will not change λk. In this way, we can form any figure-8 graph G̃.

As noted at the beginning of the section, the basic principle goes back decades; the inequality
in its sharp form (with characterization of equality) is from [46, Theorem 3.4]. Since the result
is driven by the form domains, instead of the Laplacian one could consider a more general
self-adjoint uniformly elliptic second-order operator (in particular allowing a potential) and
the conclusion would be the same.

Remark 6.6. What happens if other conditions than standard are imposed at the vertices
being glued can be far more involved, depending on the conditions in question; in particular,
one may elect to impose different conditions in G̃ than in G. The issue was quite thoroughly
investigated in [192, Section 4], where all self-adjoint conditions of radially symmetric type
(that is, where the vertex conditions are independent of permutations of the edges at a vertex);
this includes δ- and δ′-type, as well as anti-Kirchhoff, see Remark 3.25. Whether λk(G) ≤ λk(G̃)
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or λk(G) ≥ λk(G̃) depends on the conditions imposed; in particular, negative δ- or δ′-potentials
may lead to an inversion of the inequality.

To illustrate the effectivity of Theorem 6.3, let us present an alternative proof of Theorem 5.1:
it first appeared in [176] and historically it arguably is the first proof of spectral geometric
flavour in metric graph theory.

Second proof of Theorem 5.1. The is based on Nicaise’ doubling trick, as introduced in the
proof of [176, Théoréme 3.1]. Let us first begin with the case VD = ∅.

We begin by replacing each edge in G by two parallel edges, thus introducing the graph G2

of double length, each of whose vertices have even degree: by a well-known graph theoretical
result that goes back to Euler, the underlying combinatorial graph contains at least one Eulerian
cycle. We cut through arbitrarily many vertices in VN, until G is turned into such a Eulerian
cycle C, which me may identifiy with a graph G ′ with all vertices of degree 2, see Figure 14.

G G2 C

Figure 14. The original graph G (left); the “doubled graph” G2 (center); an
Eulerian cycle C (right), which forms a closed cycle in G2, traversing every edge
exactly once.

In this way, we have transformed the assignment of minimizing the Rayleigh quotient over
H1(G) to the assignment of minimizing it over the space of test functions H1(G ′): with the
above construction, and in view of Corollary 6.4, λ1(G) ≥ λ1(G ′), whereas by (2.5) we find that

λ1(G ′) =
4π2

|G ′|2
=

4π2

4|G|2
.

This yields (5.1). Also (5.2) can be proved likewise: the main difference is that the (combina-
torial) Eulerian cycle contains one point on which Dirichlet conditions are imposed. Therefore,
we have to invoke (2.2) instead of (2.5), thus obtaining

λ1(G ′) =
π2

|G ′|2
=

π2

4|G|2
.

This concludes the proof. □
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It was observed in [146] that if G already contains an Eulerian cycle, then the “doubling
trick” is not necessary and the improved estimate

λ1(G) ≥ λ1(cycle C of length |G|) = 4π2

|G|2

holds. This is a special case of Theorem 5.1.(2), since each Eulerian graph is doubly edge
connected. Intuitively, graphs which are more connected, i.e., have more non-overlapping paths
between any pairs of points, necessarily have larger λ1 and thus faster convergence of diffusion
processes to equilibrium. Higher graph connectivity and its effect on the eigenvalues is also
explored in [45]. This closely parallels results for discrete graph Laplacians which have been
known for many decades [95], where the discrete counterpart of λ1 is even called the algebraic
connectivity of the graph.

Proposition 6.7. Let G be a tree with VD = {v ∈ V : deg(v) = 1}, i.e., with Dirichlet
conditions imposed at the leaves and standard conditions elsewhere. Then

(6.2) λ1(G;VD) ≥
π2

Diam(G)2
,

where DiamG is the diameter of the graph.
If G has one Neumann leaf and all other leaves Dirichlet, the bound is

(6.3) λ1(G;VD) ≥
π2

4Diam(G)2
,

Proof. We repeatedly apply Proposition 6.23 at vertices of degree three or more, choosing the
graph with the minimal λ1(GED

) at every step. We stop when there are no vertices of degree
larger than 2 and we absorb all vertices of degree two into the edges. The graph is thus reduced
to a collection of disjoint intervals with Dirichlet conditions, and the first eigenvalue comes from
the longest of them. The longest interval possible is the path giving the diameter of the graph.

If the tree has one Neumann leaf, we double the tree and reflect its eigenfunction across this
leaf to obtain a tree with all leaves Dirichlet and the diameter less than or equal to 2DiamG. □

We will now consider operations that expand the graph in some way, either by scaling up a
part of it or by attaching a new subgraph to it.

Definition 6.8. Let v0 be a vertex of G whose set of incident edges is {e1, . . . , ek} and let H be
another metric graph. Form a new graph G̃ by removing v0 from G and, for each i = 1, . . . , k,
attaching edge ei to some vertex w = w(i) of H instead. Let w1, . . . , wm, m ≤ k be the list
of vertices of H to which an edge has been so attached. If v0 is equipped with the δ-potential
of strength γ(v0) ∈ (−∞,∞), then δ-potentials should be placed at the vertices w1, . . . , wm in
such a way that they sum to γ(v0). We then say that G̃ is formed by inserting H into G at v0.
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v0

e1

e3

e2

G

w2

w1

H

e1

e3 w2

w1
e2

G̃

Figure 15. Inserting H into G at v0, we obtain the graph G̃ on the right.

Whenever w1 = . . . = wm we have the following special case.

Definition 6.9. Assume that G and H are given, with one distinguished vertex in each graph,
say v1 ∈ G and w1 ∈ H. If G̃ is formed by gluing together v1 and w1, we speak of attaching the
pendant graph H to G.

v2 v1

v3
v4

G

w1

w2

w3H

v2 v1 = w1

v3
v4 w2

w3

G̃

Figure 16. By gluing together v1, w1 we can attach the graph H to G, thus
obtaining the graph G̃ on the right.

Theorem 6.10. The following operations decrease the given eigenvalues.
(1) Suppose G̃ is formed from G by attaching a pendant metric graph H at a vertex v0 ∈

V(G). If, for some r and k,

(6.4) λr(H) ≤ λk(G),
then

(6.5) λk+r−1(G̃) ≤ λk(G).
The inequality in (6.5) is strict if the eigenvalue λk(G) has an eigenfunction which does
not vanish at v0, λk(G) > λk−1(G) and λk(G) > λr(H).

(2) Suppose G̃ is formed by inserting a graph H at a vertex v0 of G. Assume that only
standard conditions were imposed at the vertices of H prior to insertion. Then, for all
k such that λk(G) ≥ 0,

(6.6) λk(G̃) ≤ λk(G).
The inequality in (6.6) is strict if λk(G) > max(0, λk−1(G)) and the eigenvalue λk(G)
has an eigenfunction which does not vanish at v0.
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Remark 6.11. An important special case of Theorem 6.10 is when the conditions are standard
at all vertices of H. In this case

(6.7) 0 = λ1(H) ≤ λ1(G) ≤ λk(G)

and Theorem 6.10.(1) with r = 1 shows that attaching the pendant lowers all eigenvalues of G:

(6.8) λk(G̃) ≤ λk(G) for all k ≥ 1.

The inequality (6.8) was noted in [144, Theorem 2] (for VD = ∅ and k = 1) and [191, Proposi-
tion 3.1] (for VD = ∅ and general k).

Several useful inequalities now follow.

Corollary 6.12. (1) Let G̃ be obtained from G by lengthening the edge e, i.e., replacing e
by an edge e′ of length ℓe′ > ℓe. Then

(6.9) λk(G̃) ≤ λk(G) for all k ≥ 1.

The inequality is strict if λk(G) > max(0, λk−1(G)) and there is an eigenfunction corre-
sponding to λk(G) which does not vanish identically on e.

(2) Suppose there exist v,w ∈ V(G) and a choice of n ≥ 1 first eigenfunctions ψ1, . . . , ψn
such that

(6.10) ψk(v) = ψk(w)

for all k = 1, . . . , n. If λk(G) ≥ 0, then the graph G̃ formed by inserting an edge of
arbitrary length between v,w satisfies

λk(G̃) ≤ λk(G), k = 1, . . . , n.

(3) Suppose G̃ is formed by adding an edge of length ℓ connecting existing vertices v,w of
G. Then (π/ℓ)2 ≤ λk0(G) implies λk(G̃) ≤ λk(G) for all k ≥ k0.

(4) Let VD = ∅. Suppose there exist an eigenfunction ψ associated with λ1(G) and an edge
e of G such that ψ|e ≡ 0. Then the graph G̃ formed by shrinking e to a point (i.e.,
removing e and gluing its incident vertices together) satisfies λ1(G̃) = λ1(G), and ψ|G\e
is an eigenfunction associated with λ1(G̃) (up to the canonical identification described
in Lemma 6.2).

Obtaining upper estimates tends to be easier. We have already seen in Section 5.2 how to
derive first elementary bounds by finding the energy of a test function. Alternatively, how can
we make λ1 as large as possible using surgery methods, i.e., comparing a given graph G with
a new graph G ′ whose lowest eigenvalue is both larger and explicitly known? Example 3.7.(2)
shows that there cannot be a complementary upper bound to (5.1). But the principle that
gluing vertices increases the eigenvalues has been exploited in [119, Theorem 4.2] and later
in [26, Corollary 2.9] (without and with the correcting term N , respectively) to obtain the
following bound in terms of the mean edge length.
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Theorem 6.13. If G has E ≥ 2 edges, no vertices of degree 2, and N ≥ 0 vertices of degree 1,
then

(6.11) µ2(G) ≤
π2

|G|2

(
E − N

2

)2

unless G is a path graph, a loop, or a lasso graph. Equality – among others cases – if G is an
equilateral pumpkin or flower graph, or else any figure-8-graph.

Besides Theorem 6.3, for the proof we need two further surgery principles.

Definition 6.14. We say that a closed subset G ′ ⊂ G of a given graph G is a pendant subgraph
of G if it is attached to the rest of G at a single point (without loss of generality, a vertex),
that is, the set

G ′ ∩ G \ G ′

is a singleton.

Lemma 6.15. Suppose G̃ is formed from G by deleting a pendant subgraph G ′ ⊂ G (equivalently,
G is formed from G̃ by gluing a new graph G ′ to G̃ at a single vertex). Then

µk(G̃) ≥ µk(G)
for all k ≥ 1.

Proof. Given G and its subgraph G ′ attached to G̃ = G \ G ′ at the vertex v, form a new,
disconnected graph

G ′ ⊔ G̃
via a suitable cut through v. This is a cut of rank 1, thus, by Theorem 6.3,

µk(G ′ ⊔ G̃) ≥ µk−1(G)

for all k ≥ 2. Now the set of eigenvalues of G ′ ⊔ G̃ is just the union of the set of eigenvalues
of G ′ and the set of eigenvalues of G̃ (where eigenvalues are always repeated according to their
multiplicities). Since µ1(G) = µ1(G̃) = 0 has multiplicity 2, it follows that λ1(G̃) can, at best,
correspond to µ3(G ′ ⊔ G̃), µ3(G̃) at best to µ4(G ′ ⊔ G̃), and so on. Thus, in general,

µk(G̃) ≥ µk+1(G ′ ⊔ G̃) ≥ µk(G) for all k ≥ 1. □

Finally, we need to discuss how µ2 changes upon redistributing length to make pendant edges
and/or pendant loops equilateral. The following can be deduced from [26, Corollary 7.2].

Lemma 6.16. Given G consisting of E ≥ 3 edges, n of which are pendant edges (of length
ℓp,1, . . . , ℓp,n) attached to some vertex v0, and m of which are loops (of length ℓl,1, . . . , ℓl,m)
attached to the same vertex v0. Construct G̃ from G replacing the n pendant edges by the same
number of pendant edges, each of equal length

ℓp :=
1

n

n∑
j=1

ℓp,j;
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and replacing the m loops by the same number of loops, each of equal length

ℓl :=
1

m

m∑
k=1

ℓl,k.

Then

(6.12) µ2(G) ≤ µ2(G̃).

Provided µ2(G̃) = π2

4ℓ2p
(resp., µ2(G̃) = π2

ℓ2l
), equality holds in (6.12) if and only if ℓp,j ≡ ℓp (resp.,

ℓl,k ≡ ℓl).

Proof of Theorem 6.13. Glue together all vertices of G that have degree larger than 2. This
forms a stower (a flower, if n = 0) S with the same number of edges and the same total length
as G. We conclude that

µ2(G) ≤ µ2(S)
by Lemma 6.16. The claim now follows from Lemma 3.8. □

Remark 6.17. An important motivation for the development of spectral geometry in metric
graph theory has been the pioneering investigation in [95] for the discrete Laplacian LG on
simple combinatorial graphs G. In particular, Fiedler proved that the lowest strictly positive
eigenvalue of LG is minimal for path graphs and maximal for (and only for) complete graphs.
Therefore, Theorem 5.1.(1) is seen to be a direct counterpart of Fiedler’s lower bound. On
the other hand, the interpretation of the upper bound in Equation 6.11 is less immediate,
even dropping the correction term N (or simply assuming N = 0). Indeed, this illustrates
in a nice way a heuristic but robust role: the role played by vertices in the spectral theory
of combinatorial graphs is usually played by edges in the spectral theory of metric graphs.
In particular, “complete metric graphs” are those metric graphs for which any two edges are
“adjacent”, i.e., share an endpoint: these are precisely the pumpkin stars, cf. Example 3.7 (and
in particular pumpkin and flowers).

Remark 6.18. It was mistakenly stated in [119, Theorem 4.2] that equilateral pumpkin and
flower graphs are the only classes of metric graphs maximising the estimate in (6.11). This is
wrong, as it was pointed out in [26] based on Example 6.5. It turns out that the situation is
even more complicated: so-called inflated stars form a class of isospectral graphs with respect
to the normalized Laplacian matrix, see [64, 155]. This isospectrality result can be immediately
extended to metric graphs in view of the transference principle in Theorem 8.1 below, see [169,
Remark 6.3], showing in particular that equilateral flower graphs have many isospectral metric
graphs.

Figure 17. An equilateral flower on two edges and a further isospectral metric graph.
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Indeed, it turns out that inflated stars are precisely the combinatorial graphs underlying the
pumpkin stars introduced in Remark 6.17.

Just like the lower estimate can be improved in the class of doubly connected metric graphs,
the upper estimate can be improved in the class of simply connected metric graphs, i.e., of
metric tree graphs. The following upper bound is [191, Theorem 3.2].

Theorem 6.19. Let G be a metric tree. Then

(6.13) µk(G) ≤
k2π2E2

4|G|2
for all k ∈ N,

with equality being attained if and only if
• k = 2 and G is an equilateral star graph, or
• k ≥ 3 and G is a path graph.

Proof. Let us see how (6.13) can be deduced from surgery principles. Pick one edge of maximal
length and an edge of the next maximal length within G, say e1, e2. Upon iteratively deleting
pendant edges, we can transform G into the (unique) path P ⊂ G that contains e1, e2, which
can be regarded as an interval of length |P| with Neumann boundary conditions. Then it
follows from Lemma 6.15 that

µk(G) ≤ µk(P) =
π2k2

|P|2
≤ π2k2E2

|e1|2 + |e2|2
≤ π2k2E2

4|G|2
. □

The following refinement for k = 2 has been observed in [26, Theorem 2.2]: its proof is based
on the bound

ElDiam(G) ≥ 2|G|,
which is sharp and rigid: it becomes an equality precisely for equilateral stars.

Proposition 6.20. Let G be a metric tree with El ≥ 2 leaves. Then

µ2(G) ≤
π2E2

l

4|G|2
,

with equality being attained if and only if G is a star graph.

Metric trees are in many respects interpolating between intervals and higher dimensional
domains. For instance, we mention the following bound [191, Theorem 4.1], which is reminiscent
of Friedlander’s inequality (2.11).

Proposition 6.21. Let G be a metric tree. Then

µk(G) ≤ λk(G;VD = V) for all k ∈ N.

Equality holds for at least one k if and only if all edge lengths are rationally dependent.

The perhaps more widely known result from [191], namely [191, Theorem 3.4], states that
on a metric tree it is possible to find an upper bound on µk purely in terms of the diameter; in
fact, this is a direct consequence of Lemma 6.15. This may be combined with the intertwining
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principle for cutting through vertices, Theorem 6.3, to obtain the following general result, which
also appeared as [90, Theorem 5.2] (in a slightly more general context, namely among graphs
of finite total length and finite number of cycles but with a possibly infinite number of edges).
In the following, we call

β := E − V + 1

the first Betti number of a (metric) graph with E edges and V vertices: by an easy combinatorial
argument, β is the number of independent cycles in the graph; in particular, metric trees are
characterized as those metric graphs with vanishing Betti number.

Theorem 6.22. Let G have Betti number β ∈ N0. Then

(6.14) µk(G) ≤ (k + β − 1)2
π2

Diam(G)2
for all k ∈ N.

Proof. Since G has Betti number β, it is possible to cut it β times to produce a tree T , which
obviously satisfies Diam T ≥ Diam(G). By Theorem 6.3, we have µk(G) ≤ µk+β(T ). Now,
by iteratively deleting pendant edges we may prune T until we are left with a path graph of
length Diam T , whose eigenvalues are those of the second derivative with Neumann boundary
conditions. We conclude that

µk(G) ≤ µk+β(T ) ≤ π2(k + β − 1)2

Diam(T )2
≤ π2(k + β − 1)2

Diam(G)2
. □

6.2. Further interlacing techniques. The following interlacing estimate, which is compa-
rable to Theorem 6.3, is [24, Lemma 4.2].

Proposition 6.23. Let G be a metric graph with a vertex v of degree d with standard conditions,
whose removal separates the graph into d disjoint subgraphs. Denote by Ev the set of edges
incident in v and let r < d be a nonnegative integer. For a subset ED of Ev, with |ED| = r,
define GED

to be the modification of the graph G obtained by imposing the Dirichlet condition
at v for edges from ED and leaving the edges from Ev \ ED connected at v with the standard
condition. Then

(6.15) µn(G) ≤ min
|ED|=r

λn(GED
; {v}) ≤ µn+1(G) ≤ max

|ED|=r
λn(GED

; {v}) ≤ µn+2(G).

The following is [45, Theorem 4.7].

Theorem 6.24. Let G have Betti number β. Then

(6.16) µk+1(G) ≥
(
k − N + β

2

)2
π2

|G|2
for all k ≥ max{2, N + β} if VD = ∅

and

(6.17) λk(G;VD) ≥
(
k − N + β

2

)2
π2

|G|2
for all k ≥ N + β if VD ̸= ∅,

where N is the number of vertices of degree 1 on which a standard (i.e., Neumann) condition
is imposed.
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Proof. If G is not a tree, we find an edge whose removal would not disconnect the graph. Let v
be a vertex to which this edge is incident; since G is not a cycle, without loss of generality we
can assume its degree is 3 or larger (otherwise this vertex can be absorbed into the edge). We
disconnect the edge from this vertex, reducing β by one and creating an extra vertex of degree
1 where we impose the Neumann condition. We keep standard conditions at v. Then the new
graph is not a cycle, as a new vertex of degree 1 was created. We may therefore repeat the
process inductively until we obtain a tree T with N ′ = N + β Neumann vertices.

Since the eigenvalues are reduced at every step, λk(G) ≥ λk(T ). It is therefore enough to
verify the inequality for trees.

Given a tree T , by Theorem 4.4 we can choose the k-th eigenvalue to be simple and the
associated eigenfunction to be nonzero on vertices [51], hence to have exactly k nodal domains
[187, 198]. Each nodal domain is a subtree Tj and λk(T ) is the first eigenvalue of the subtree.

There are at most |N | subtrees with some Neumann conditions on their leaves. Since these
are nodal subtrees (k > 1), there are also some leaves with Dirichlet conditions and we can use
(5.2) in the form Lj

√
λ ≥ π/2. The same conclusion is true if k = 1 and T has at least one

Dirichlet vertex.
If k ≥ |N |, we also have at least k−|N | subtrees with only Dirichlet conditions at the leaves,

for which we can use the bound of Proposition 6.7 but with the diameter substituted by the
total length of the subtree, i.e., Lj

√
λ ≥ Diam(Tj)

√
λ ≥ π. We therefore have

L
√
λk(T ) =

k∑
j=1

Lj

√
λ1(Tj) ≥ N

π

2
+ (k −N)π =

(
k − N

2

)
π. □

An upper bound that is similar in spirit was obtained in [45, Theorem 4.9].

Theorem 6.25. Let G be a connected quantum graph with Dirichlet or Neumann conditions
at the vertices of degree 1 and standard condition elsewhere. If G is not a cycle, then

(6.18) λk(G) ≤
(
k − 2 + β +D + N+β

2

)2 π2

|G|2
for all k ∈ N,

where D := |VD| and N is number of vertices of degree 1 that do not belong to VD.

Proof. If G is not a tree (i.e., if β > 0) and not a cycle, we repeat the process described at the
beginning of the proof of Theorem 6.24, disconnecting β edges at vertices and creating a tree
T with β additional Neumann vertices of degree 1. At every step, the eigenvalue goes down,
but by Theorem 6.3 not further than the next eigenvalue, therefore we have λk(G) ≤ λk+β(T )
and the bound for general graphs follows from the bound for trees, β = 0.s

We will prove the result assuming G is a tree by induction on the number of edges. The
inequality turns into equality for a single edge with either Dirichlet, Neumann or mixed condi-
tions.

Choose an arbitrary vertex v of degree three or more and apply Proposition 6.23 (the third
inequality) with r = 1. Let G ′ be the graph realizing this inequality; it is a disjoint union of
two trees – denote them by T1 and T2. Without loss of generality, λk(G ′) is an eigenvalue of T1;
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denote its position in the spectrum of T1 by j ≤ k. We therefore have

λk(G ′) = λj(T1) and λk(G ′) ≤ λk−j+1(T2).

Denoting by L1 and L2 the total lengths of the two trees, we have L = L1 + L2. Denoting by
D1 and D2 the number of Dirichlet vertices, we also have D = D1+D2− 1, since one Dirichlet
vertex was added in the process of application of Proposition 6.23 with r = 1. We now use the
inductive hypothesis for the two trees T1 and T2 to get

L
√
λk(G) ≤ L1

√
λj(T1) + L2

√
λk−j+1(T2)

≤ π
(
j − 2 +D1 +

N1

2

)
+ π

(
k − j + 1− 2 +D2 +

N2

2

)
= π

(
k − 3 +D + 1 + N

2

)
.

This completes the proof. □

Remark 6.26. (a) The first expression in (6.16) gives a better bound than (5.19) for all k ≥
|N | + β. Theorem 6.24 is asymptotically sharp in the sense that both the eigenvalue and its
bound have the same asymptotic form k2π2

|G|2 + o(1) as k → ∞. It was proved in [151] that
Theorem 6.25 is asymptotically sharp, too: there exists a sequence of metric graphs for which
the error in (6.18) vanishes asymptotically.

Further asymptotically sharp bounds where obtained in [176, Théoréme 2.4]: namely

(6.19)
(k − 1− |G|)2π2

|G|2
≤ λk(G) ≤

(k − 1 + |G|)2π2

|G|2

if G is equilateral. For some (equilateral!) G, (6.19) is tighter than (6.18).
(b) Applying Theorem 5.1 for each of the k nodal subtrees in the proof of Theorem 6.24, we

can recover again Theorem 5.12.

6.3. Pumpkin chains, Sturm–Liouville problems, and diameter. In this and the next
section we will look at advanced techniques for obtaining eigenvalue bounds (for simplicity
in the special case of µ2) by comparing a given graph with special classes of more structured
graphs. It turns out that the pumpkin chains introduced in Example 3.7 will play an important
role for both upper and lower bounds.

Lemma 6.27. Let G be compact and connected. Then there exist two locally equilateral pumpkin
chains P1,P2 such that

µ2(P1) ≤ µ2(G) ≤ µ2(P2),

where P1 has the same or lesser total length as G, and the total length of its bridges is no longer
than the bridges within G; while P2 can be taken to have the same diameter as G and the same
number or fewer vertices.

The lower bound, proved in [46, Lemmas 5.1 and 5.3], requires a local symmetrization tech-
nique in addition to sharp forms of gluing and removing superfluous pendants.

The upper bound/construction is proved in [119, Section 5.2], by fixing any two diametral
points in G, and successively considering all non-backtracking paths in the graph between
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them, shortening the paths, gluing them together at selected points, and deleting the rest
of the graph to obtain the desired comparison graph P2. It combines the gluing principle,
Theorem 6.3 in its simplest form (gluing vertices cannot decrease the eigenvalues), together
with the principles that shortening edges and deleting pendant graphs cannot decrease the
eigenvalues (Corollary 6.12.(1) and Theorem 6.10.(1), respectively). It is also explained in full
in [59, Section 2].

Locally equilateral pumpkin chains have the advantage that, up to the right choice of basis,
their eigenfunctions (associated with the standard Laplacian, although a Dirichlet condition
may be assumed at either of the antipodal vertices) decompose naturally into longitudinal
(depending only on the distance to the antipodal vertices) and transversal ones (supported
only on a single pumpkin, and in particular vanishing on all vertices), see [46, Lemma 5.4]. In
particular, we have the following.

Lemma 6.28. Let P be a locally equilateral pumpkin chain which is not just a pumpkin graph.
Then µ2(P) is simple and its eigenfunction is longitudinal, that is, in the notation of Exam-
ple 3.7.(7) it depends only on dist(·, v1).

As noted, the result continues to hold if one or two antipodal vertices are equipped with a
Dirichlet condition instead; see [46, Lemma 5.5].

This means that, if P is a locally equilateral pumpkin chain, then µ2(P) is equal to the spec-
tral gap of a suitable weighted Sturm–Liouville problem on an interval of length dist(v1, vV) =
DiamP , and there is a natural correspondence between their respective eigenfunctions, as
explained in [119, Section 5.2]:

Lemma 6.29. Letting D = DiamP, we have that µ2(P) is equal to the spectral gap (smallest
nontrivial eigenvalue) of the problem

−(ωu′)′ = λωu in (0, D),

u′(0) = u′(D) = 0,

where, in the notation of Example 3.7(7), ω ∈ L∞(0, D) is a positive step function defined by
ω(x) = mi, the number of parallel edges between vi and vi+1, if dist(vi, v1) < x < dist(vi+1, v1).

Both this principle of mapping onto a Sturm–Liouville problem, and the upper bound method
in Lemma 6.27 were originally developed to study upper bounds for µ2 in terms of diameter
which, in particular, do not involve the total length (unlike, e.g., Proposition 5.3); in particular,
it was shown in [119, Section 5.2] that no upper bound purely in terms of diameter is possible:

Example 6.30. There exists a sequence Gn of graphs of fixed diameter, such that µ2(Gn) → ∞.

The graphs are taken to be pumpkin chains of increasing complexity but constant diameter
D > 0, whose associated Sturm–Liouville weights ωn are assumed to be sufficiently close in
L∞(0, D) to the exponential (smooth) weights ω̃n(x) = enx. An explicit calculation shows
that the spectral gap for ω̃n behaves like n2

4
. These weights correspond to “cusp-like” pumpkin

chains, where the number of parallel edges within each pumpkin grows exponentially as one
traverses the chain.
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On the other hand, if one fixes the number of vertices (and thus the degree of complexity of
the graph, in some sense) one can obtain a sharp upper bound.

Theorem 6.31. Let G have V vertices and diameter DiamG > 0. Then

(6.20) µ2(G) ≤
π2(V + 2)2

4(DiamG)2
.

The estimate is sharp in the sense that there exists a sequence of pumpkin chains Gn with fixed
diameter and number of vertices, realizing equality in (6.20) in the asymptotic limit.

This was proved in [59, Theorem 1.1], sharpening an earlier estimate [119, Theorem 6.1]. In
either case, as noted Lemma 6.27 allows one to reduce to considering only locally equilateral
pumpkin chains. One then uses a test function argument to control the spectral gap of the
latter, based on sinusoidal functions of dist(·, v1). In [59] this test function argument is analyzed
carefully and brought into its sharpest form.

A similar test function argument applied to pumpkin chains does, however, also allow one
to obtain an upper bound which also involves the total length, see [119, Theorem 7.1]:

Theorem 6.32. We have

µ2(G) ≤
π2

(DiamG)2
· 4|G| − 3DiamG

DiamG
.

This is broadly similar to Proposition 5.3 but has quite a different form (and was obtained
several years earlier). Unlike Theorem 6.31, to the best of our knowledge neither this bound
nor the bound in Proposition 5.3 has been optimized, that is, they are unlikely to be sharp.

We finish this section by recalling a few other complementary bounds and non-bounds involv-
ing diameter from [119]. If one looks for corresponding lower bounds in terms of just DiamG,
or even DiamG and |V|, then none are possible, as a simple example ([119, Example 5.1])
shows:

Example 6.33. Form Gn by taking an interval of length 1
3

and, to each of its two endpoints,
join a flower graphs on n edges of length 1

3
each (Gn is thus a “flower dumbbell”). Then Gn

has exactly two vertices, and DiamGn = 1. However, a simple test function argument shows
that µ2(Gn) → 0; take the function to be +1 on one flower, −1 on the other and sinusoidal (or
linear) on the handle of the dumbbell.

Since our graphs may have multiple parallel edges, and indeed this property is critical in
many of the constructions above, fixing the number of edges the graph may have is a much
stronger restriction than fixing its number of vertices; it was observed in [119, Remark 6.3] that
both upper and lower bounds on µ2 are possible if one fixes the diameter and the number of
edges.

Proposition 6.34. Let G have E edges and diameter DiamG, then
π2

E2(DiamG)2
≤ µ2(G) ≤

4π2E2

(DiamG)2
.
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Neither bound is likely to be optimal; improving them is an open problem. The upper
bound follows from a trivial test function argument, completely analogous to (5.8): since at
least one edge must have length at least DiamG

E
, one may place a full sine wave on that edge.

The lower bound follows from the basic lower bound, Theorem 5.1.(1), plus the trivial estimate
|G| ≤ E DiamG.

6.4. Cutting along eigenfunctions. In this section we are presenting a refinement of the
notion of cutting through a vertex introduced in Definition 6.1. The following idea goes back
to [40, Sec 3.1] and [46], but it has first been fully exploited in [47], where it is crucially used to
prove Proposition 6.37 below. In the following it will be fundamental to allow for δ-conditions
at the vertices of G, as introduced in Section 8.9, i.e., continuity across each vertex along with∑

e∼v

∂ue
∂n

(v) = γ(v)u(v)

for some vector (γ(v))v∈V of strengths of δ-potentials: remarkably, they will appear in the proof
of Proposition 6.37, even though the assertion only deals with the Laplacian with standard
vertex conditions. We regard the following as a hybrid surgical operation, in that it modifies a
metric graph and the associated Laplacian at the same time.

Definition 6.35 (Cutting through vertices along a function). Assume we are given a function
ψ ∈ H1(G) satisfying a δ-condition with strength γ(v) at v. The following surgery transforma-
tion will be called cutting through the vertex v along the function ψ:

(1) cutting the metric graph G through a vertex v, thus producing p ≥ 2 new (“descendant”)
vertices v1, v2, . . . , vp and

(2) endowing the new vertex vi with the strength

(6.21) γ(vi) = − 1

ψ(v)

∑
e∼vi

∂ψe

∂n
(v), i = 1, . . . , p,

where the summation is over the edges that are attached to the relevant descendant
of v. By convention, when ψ(v) = 0, we impose Dirichlet conditions at all vertices
v1, . . . , vp.

A few observations are in order. On one hand, since γ(v) =
∑p

i=1 γ(vi), the analogue of
Theorem 6.3 still holds. Namely, denoting by Gcut the graph obtained by cutting,

(6.22) λk(Gcut) ≤ λk(G) ≤ λk+(p−1)(Gcut), k ≥ 1,

see, for example, [48, Thm. 5.3].
On the other hand if ψ was an eigenfunction before cutting, it is also an eigenfunction of

the cut graph Gcut, with the same eigenvalue. Importantly, the label of the eigenvalue in the
spectrum may have changed, but (6.22) gives some control on the change in the label. This can
be used, as in [40], to give a bound on the number of zeros of the eigenfunction ψ. Conversely,
as in Proposition 6.37 below, using the knowledge of the number of zeros, one can identiy the
label of the new eigenvalue.
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We will illustrate the power of this idea by proving an estimate on the girth of G: this is
defined as follows.

Definition 6.36. The girth of a connected metric graph G is

Girth(G) := min{|c| : c ⊂ G is a cycle in G̃},

where G̃ is obtained from G by gluing together all Dirichlet vertices of G, if any are present.
The girth is defined to be zero if G̃ is a tree.

Proposition 6.37. If VD ̸= ∅, then

(6.23) λ1(G;VD) ≤
π2

Girth(G)2
.

Equality is attained if and only if G is an equilateral star graph with n ≥ 2 edges of length
Girth(G)/2 with Dirichlet conditions at all degree 1 vertices.

Proof. Due to our definition of the girth, the statement of the theorem is vacuous if G has no
cycles and only one Dirichlet point. Henceforth we exclude such graphs from consideration.
Then we may assume that vertices of G have degree 1 if and only if they are equipped with
the Dirichlet condition. Indeed, we may remove any pendant edges with standard conditions
since this operation increases the eigenvalues by Remark 6.11; a Dirichlet condition imposed
at a vertex of degree d separates the vertex into d copies.

We recall that ψ ≥ 0 has no local minima and that the maxima are isolated because ψ(x) > 0
implies

(6.24) ψ′′(x) = −λ1(G;VD)ψ(x) < 0.

For the purpose of this proof all internal (to an edge) local maxima are to be considered vertices.
We may and do assume, without loss of generality, that there are no further vertices of degree
two. Now, the set of serious points (in the sense of Definition 3.6) of ψ is a nonempty finite
subset of the compact graph G. Let v0 ∈ V(G) denote a lowest serious point, that is, v0 is
serious and 0 < ψ(v0) ≤ ψ(v) for every serious point v ∈ V(G) of ψ. Denote by e1, e−1 any two
edges incident with v0 such that ∂ψe±1

∂n
(v0) ≥ 0.

Now denote by v1 the other vertex incident with e1. If it is a Dirichlet vertex, we stop.
Otherwise, by concavity (6.24) we have ψ(v1) < ψ(v0); hence, v1 is not serious. We denote by
e2 the unique edge e2 adjacent to v1 such that ∂ψe2

∂n
(v1) ≥ 0. Repeating the process with e2

and so on, we obtain a path e1, v1, e2, . . . , em terminating at a Dirichlet vertex. We perform
the same for e−1, constructing another path e−1, v−1, e−2, . . . , e−n through G, also terminating
at a Dirichlet vertex. We define the graph G̃ to be the union of these two paths. It is either
a path in G joining two Dirichlet vertices, or at some point the two paths leading from e1 and
e−1 meet and G̃ is a tadpole ending at a single Dirichlet point, see Figures 18 and 19.



D
ra

ft

LAPLACIANS ON METRIC GRAPHS: METHODS OF SPECTRAL GEOMETRY 57

v0

e−1 e1

e−2 e2

v0e−1 e1
e−2 e2

e3

Figure 18. Examples of metric graphs with Dirichlet vertices (marked as small
empty disks) and with a schematic depiction of the first eigenfunction as a gra-
dient flow (blue arrows). The serious points are now the vertices with at least
two outward-pointing arrows; they are circled in blue. The paths that are con-
structed in the course of the proof of Proposition 6.37 are shown as thicker edges.

Figure 19. A lasso graph with one Dirichlet vertex.

In the first case, the path is at least of length s; in the second, the cycle of the tadpole
is of length at least s. Now we wish to cut G̃ out of G along the eigenfunction ψ: at each
non-Dirichlet vertex vi of G̃ (i = 0,±1,±2, . . .), we add a δ-condition of the form∑

e∼vi
e∈G̃

∂ue
∂n

(vi) + γviu(vi) = 0,

where

(6.25) γvi :=
1

ψ(vi)

∑
e∼vi
e∈G\G̃

∂ψe

∂n
(vi) = − 1

ψ(vi)

∑
e∼vi
e∈G̃

∂ψe

∂n
(vi),

where the second equality follows from the Kirchhoff condition. The δ-conditions are chosen
precisely so that ψ|G̃ is still an eigenfunction of G̃: we will eventually compare G̃ with an interval
or a tadpole (lasso) without δ-potentials, yielding the inequality.

Now, λ1(G) is still an eigenvalue, and, since ψ is non-negative, λ1(G) = λ1(G̃) by (6.22).
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We claim that γv0 ≤ 0 and γvi < 0 for i ̸= 0 (recall that ν points into vi). For v0 this follows
from the choice of e1 and e−1. For i ̸= 0 this follows since vi is not serious: ei+1 ∈ G̃ is the
only edge incident with vi in G for which ∂ψe

∂n
(vi) ≥ 0; hence all derivatives in the first sum in

(6.25) are strictly negative. Note that the degree of vi is at least 3 for all i ̸= 0 since all degree
2 vertices have been suppressed; thus the sum contains at least one summand.

By [49, Thm 3.1.8], replacing all γvi with 0 can only increase the eigenvalues. Therefore,
λ1(G) is bounded from above by the first eigenvalue of either the Dirichlet interval of length s
or a Dirichlet tadpole with cycle length s. In both cases, the eigenvalue is at most (π/s)2 by
(5.11).

Finally, we discuss the case of equality. Sufficiency is clear. To prove necessity, we first
observe that ψ|G̃ is a simple eigenfunction that does not vanish at any point of G̃ except for
the Dirichlet vertices. In particular, in the case of a tadpole the inequality must be strict if the
handle is non-trivial. In the case of a path, G̃ cannot contain any edges other than e1 or e−1,
since γvi < 0 when i ̸= 0, and strictly increasing γ strictly increases λ1 (Theorem 6.3). The
same reasoning yields ∂ψe±1

∂n
(v0) = 0.

If the degree of v0 is larger than 2, the Kirchhoff condition now implies

(6.26)
∑

e∼v0,e ̸=e±1

∂ψe

∂n
(v0) = 0,

and therefore there is another edge ẽ1 with ∂ψẽ1

∂n
(v0) ≥ 0. Repeating the proof with ẽ1 instead

of e1 we can similarly conclude that ẽ1 leads to a Dirichlet vertex and ∂ψẽ1

∂n
(v0) = 0. Proceeding

by induction (and applying (6.26) to the sums over fewer and fewer edges), we conclude that
every edge incident with e0 leads to a Dirichlet vertex with no vertices of degree ≥ 3 along
the way. Thus G is a star graph, whose ground state eigenfunction reaches its maximum at
the central vertex v0. Moreover, ∂ψe

∂n
(v0) = 0 for every incident edge e, therefore – since the

eigenvalue is π2/s2 – the edge length must be s/2. □

A simple symmetry argument now yields the following estimate for graphs without Dirichlet
conditions: it has been obtained in [47], too.

Corollary 6.38. Suppose the connected metric graph G is obtained from two copies of another
connected graph, Ĝ, by pairwise gluing of finitely many pairs of the duplicated vertices. Then

(6.27) µ2(G) ≤
4π2

Girth(G)2
.

Equality is attained if G is an equilateral pumpkin graph.

The following counterpart of Proposition 6.23 is [90, Lemma 4.18].

Proposition 6.39. Let G be a locally finite, connected metric graph, and VD ⊂ {v ∈ V :
deg(v) = 1}. Suppose that G1 and G2 are two mutually disjoint, complementary metric sub-
graphs of G such that G1 ∩ G2 consists of finitely many vertices of G. Let ψ ≥ 0, ψ ̸≡ 0, be
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an eigenfunction corresponding to λ1(G;VD). If, for each vertex v ∈ G1 ∩ G2 and each edge e
connecting v with a vertex w in G2, the derivative of ψ at v pointing into e is non-positive, then

(6.28) λ1(G,VD) ≥ λ1(G1,VD1)

holds, where VD1 := G1 ∩ VD. The inequality is strict if and only if at least one of the above-
mentioned derivatives is strictly negative.

v1

v2

e1

e3

e2 G1 G2

Figure 20. A partition of a graph G into two subgraphs G1 and G2. To apply
Lemma 6.39 the derivatives of the eigenfunction ψ at the vertices v1 and v2
pointing into the respective edges e1, e2 and e3 have to be nonpositive.

Proof. Let E1 denote the edge set of G1 and let ψ1 denote the restriction of ψ to G1. For a given
vertex v ∈ G1∩G2 let E2,v denote the set of edges in G2 that are incident to v, and suppose that
for each such edge e ≃ [0, ℓe] the vertex v is identified with 0. Then, ψ′

e(0) ≤ 0 for all e ∈ E2,v

by assumption. One sees immediately that

(6.29)

∥ψ′
1∥2L2(G1)

=
∑
e∈E1

∫ ℓe

0

|ψ′
e(x)|2dx =

∑
e∈E1

ψeψ
′
e | ℓe0 −

∑
e∈E1

∫ ℓe

0

ψe(x)ψ
′′
e (x)dx

=
∑

v∈G1∩G2

ψ(v)
∑
e∈Ev,2

ψ′
e(0) + λ1(G,VD)∥ψ1∥2L2(G1)

≤ λ1(G,VD)∥ψ∥2L2(G1)
,

This implies (6.28); moreover, (6.29) – and hence (6.28) – is strict if ψ′
e(0) < 0 for some

v ∈ G1∩G2 and some e ∈ E2,v. The converse implication holds because ψ1 = ψ|G1 can be proven
to be a ground state of HVD1

if ψ′
e(v) = 0 at all cutpoints v of G1,G2 and all e ∈ E2,v. □

Proposition 6.39 can be used to prove the following lower estimate, which improves The-
orem 5.1 on a special class of trees. It bears a certain similarity to the celebrated Makai
inequality for bounded, simply connected, planar domains.

Theorem 6.40. Let G be a metric tree and assume that there is a vertex vc ∈ G which has
same distance from all the (further) vertices of degree 1. Then the lowest eigenvalue λ1(G,VD)
admits the lower bound

(6.30) λ1(G,VD) ≥
π2

4 Inr(G;VD)2
,
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where VD := {v ∈ V \ vc : deg(v) = 1}.

Observe that under the assumptions of Theorem 6.40, Dirichlet conditions are imposed on
all but at most one vertices of degree 1.

Proof. Let G be a metric tree. We first consider the special case that deg(vc) = 1. If |VD| = 1,
then G is isometrically isomorphic to an interval with mixed Dirichlet/Neumann conditions in
the degree 1 vertices and therefore λ1(G;VD) = π2

4 Inr(G;VD)2
. Next assume that |VD| ≥ 2. Let

ψ denote a nonnegative eigenfunction corresponding to λ1(G;VD). Using induction and the
Kirchhoff condition, it can be shown that there exists a path P in G connecting the center
point vc and a vertex v ∈ VD such that ψ is decreasing along P . Since |VD| ≥ 2, and hence G is
not an interval, P passes at least one vertex other than v, vc. Let w denote the unique vertex in
V \VD that is adjacent to v, let G ′ denote the graph obtained after removing the edge vw from
G and let VD

′ := VD \{v}. Since ψ is decreasing on the edge vw, we may apply Proposition 6.39
to obtain λ1(G;VD) ≥ λ1(G ′,VD

′); however, by construction of vc, Inr(G;VD) = dist(vc,w) for
all w ∈ G, whence Inr(G;VD) = Inr(G ′;VD

′). Repeating this argument inductively, after a finite
number of steps we are reduced to |VD| = 1, which proves the estimate (6.30) for all metric
trees with deg(vc) = 1.

Let us now assume that deg(vc) > 1. Again let ψ denote a nonnegative eigenfunction
corresponding to λ1(G;VD). Since ψ satisfies Kirchhoff conditions in vc, there exists an edge
e incident to vc such that ψ has nonpositive derivative on e at vc. Now, cutting through the
center vertex d− 1 times yields d disjoint trees; for each of these, vc continues to be the center
vertex (and in particular each has the same inradius). From these trees, let G2 denote the tree
containing the edge e and let G1 denote its complement in G, the (restored) union of the other
d− 1 trees. In G1 the center vertex vc has degree d− 1. Setting VD1 := VD ∩ G1 and applying
Lemma 6.39 we obtain λ1(G;VD) ≥ λ1(G1,VD1). Because the claim is already known to hold
whenever deg(vc) = 1, an induction argument now yields (6.30) for all metric trees. □

7. M-functions

Titchmarsh-Weyl M-function is proven to be an important tool in the studies of one-dimensional
Schrödinger equation [207]. It is usually defined via

M(λ) =
u′(0)

u(0)
, Imλ ̸= 0,

where u is any square integrable solution to the stationary Schrödinger equation

−u′′(x) + q(x)u(x) = λu(x), x ∈ [0,∞).

One may think about the point x = 0 as the unique boundary point allowing to collect infor-
mation about solutions of the Schrödinger equation on the half-line. Therefore M-function is
an effective tool to solve inverse problems, in particular it can be used to determine the spectral
measure.

Introducing M-function for metric graphs one usually picks up few existing vertices, which
can be seen as points on G through which investigation of the metric graph can be carried out.
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The corresponding M-function is then a matrix-valued Nevanlinna-Herglotz function (see
discussion below) and contains all information on the metric graph G, which can be obtained
by observing solution of the stationary Schrödinger equation on G at the contact set. It can be
seen as energy dependent Dirichlet-to-Neumann map. It has deep connections to the Wigner’s
reaction R-matrix proposed to model atomic collisions [209].

The goal of this section is to provide a comprehensive introduction into the theory of graph’s
M-function and illustrate how these functions can be used in graph’s surgery and solving inverse
problems. The interested readers may consult [142, Chapters 17 and 18].

7.1. Definition of the M-function.

Definition 7.1. A contact set ∂G is any finite subset of vertices in G. All other vertices in G
are called internal vertices and will be denoted by ∂Gc.

The contact set can be chosen arbitrarily, it usually contains all degree 1 vertices and is
smaller than the total set of vertices in order to avoid overdetermined problems. For example
in the case of single interval, to solve the inverse problem it is enough to have only one of the
end points in the contact set. On the other hand, every inner point on an edge can be seen as
a degree two vertex and may therefore be a member of the contact set, if necessary.

Definition 7.2. For any λ, Imλ ̸= 0, consider the set of solutions to the equation

(7.1) −ψ′′(x) = λψ(x),

satisfying:
• standard vertex conditions at all internal vertices ∂Gc,
• (only) continuity conditions at the contact vertices ∂G.

Every such solution is uniquely determined by its values on ∂G. Then the M-function associated
with the graph G and the contact set ∂G is the |∂G| × |∂G| map defined by

(7.2) M(λ) : ψ|∂G 7→ ∂ψ|∂G.
where ψ|∂G and ∂ψ|∂G are the vectors of function values and sums of normal derivatives values,
respectively, taken at the contact points:

(7.3) ψ|∂G = (ψ(vj))vj∈∂G, ∂ψ|∂G = (∂ψ(vj))vj∈∂G.

The functions are assumed to be continuous at the contact vertices, therefore the values
ψ(vj) are well-defined. The sum of normal derivatives has already been used in (3.5)

∂u(v) ≡
∑
e∼v

∂ue
∂n

(v).

We state without proving few properties of the M-functions:
• Every M-function associated with the graph G and contact set ∂G is a Herglotz-Nevanlinna

matrix valued function, i.e., it is
– analytic outside the real axis λ /∈ R;
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– with positive imaginary part in the upper half-plane

Imλ > 0 ⇒ ImM(λ) :=
1

2i

(
M(λ)− (M(λ))∗

)
≥ 0;

– symmetric with respect to the real axis

(M(λ))∗ = M(λ).

• M(λ) originally defined for Imλ ̸= 0 can be extended to a meromorphic operator-valued
function on C. Each of the singularities is an eigenvalue of the Dirichlet Laplacian on
G – the Laplace operator determined by Dirichlet conditions at the contact vertices ∂G
and standard conditions at the internal vertices ∂GC .

• Similarly −M−1(λ) is also a matrix-valued Herglotz-Nevanlinna function. Each sin-
gularity of −M−1(λ) is an eigenvalue of the standard Laplacian on G – the Laplace
operator determined by standard conditions at both contact and internal vertices of G.

Note that not all eigenvalues of the Dirichlet Laplacian lead to singularities of the M-function.
Metric graphs have localised eigenfunctions and their support can be disjoint from the contact
set ∂G. Similarly not all eigenvalues of the standard Laplacian lead to singularities of the
inverse M-function.

Introducing M-function it is not necessary to require that standard conditions are assumed
at all internal vertices ∂GC – one may use any Hermitian vertex conditions there.

7.2. Elementary examples. The goal of this subsection is to describe how to obtain M-
functions for elementary graphs assuming standard vertex conditions.

Single interval with two contact points. Assume that G1 = [0, ℓ] is the graph formed by one
edge, its end-points forming two vertices v1 = {0} and v2 = {ℓ}. We assume in addition that
the contact set contains both vertices ∂G = {v1, v2}.

To calculate the M-function we determine first all solutions to the differential equation

−ψ′′(x) = λ︸︷︷︸
=k2

ψ

⇒ ψ(x) = a1e
ikx + a2e

−ik(x−ℓ), a1, a2 ∈ C.

This solution can be expressed using its values at the end-points as

ψ(x) =
i

2 sin kℓ

((
e−ikℓψ(0)− ψ(ℓ)

)
eikx +

(
− ψ(0) + e−ikℓψ(ℓ)

)
e−ik(x−ℓ)

)
.

The normal derivatives at the end-points are:

∂ψ(v1) = ψ′(0) = −k cot kℓ ψ(0) + k

sin kℓ
ψ(ℓ),

∂ψ(v2) = −ψ′(ℓ) =
k

sin kℓ
ψ(0)− k cot kℓ ψ(ℓ).

Taking into account that
ψ(v1) = ψ(0), ψ(v2) = ψ(ℓ),
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we get the M-function

(7.4) MG1(λ) =

 −k cot kℓ k

sin kℓ
k

sin kℓ
−k cot kℓ

 .

It is easy to see that the function has singularities at the zeroes of sin kℓ – the spectrum of the
Dirichlet operator on the interval of length ℓ.

Single interval with one contact point. Consider the same graph G1, but choose the contact set
consisting of just one vertex, say ∂G = {v1} (∂GC = v2).

To determine the M-function we need to look at the solution of the same differential equation
satisfying standard, i.e., Neumann, condition at x = ℓ. Such solution is unique up to a
multiplicative constant:

ψ(x) = cos k(x− ℓ).

The formula determining the M-function coincides with the classical formula used by Weyl:

MG1(λ) =
ψ′(0)

ψ(0
=

−k sin k(0− ℓ)

cos k(0− ℓ)
= k tan kℓ.

This formula differs from the formula in the first example since we have a different contact set
and the M-function is a scalar-valued function.

The singularities coincide with the spectrum of the Laplacian on the interval [0, ℓ] with
Dirichlet condition at x = 0 and Neumann condition at x = ℓ.

Lasso graph with one contact point. Consider the lasso graph G2 formed by the loop of length
ℓ and handle of length s. Assume that the contact set is formed by the single degree 1 vertex.
Writing general solutions of the differential equations on the edges and taking into account
standard vertex conditions at the central vertex one easily calculates the M-function

MG2(λ) = k
cos kℓ

2
sin ks+ 2 sin kℓ

2
cos ks

cos kℓ
2
cos ks− 2 sin kℓ

2
sin ks

.

Independently of the value of s, the Laplacian on G2 has eigenvalues
(
2π
ℓ

)2 corresponding to
the eigenfunctions supported by the loop and identically equal to zero on the handle. These
eigenfunctions are not seen from the contact vertex and therefore do not cause any singularities
in the M-function.

7.3. Explicit formulas for the M-function. We have seen that singularities of the M-
function and its inverse are always connected with the eigenvalues of the following two Lapla-
cians on G:

• the Dirichlet Laplacian −∆D(G) determined by Dirichlet conditions on ∂G and standard
conditions at the inner vertices ∂GC ;

• the standard Laplacian −∆st(G) determined by standard conditions at all vertices.
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Let us denote by λDn , ψ
D
n and λstn , ψ

st
n , n = 1, 2, . . . , the eigenvalues and the normalised (in

the L2(G)) eigenfunctions of the Dirichlet and standard Laplacians, respectively. Then the
following two explicit formulas for the M-functions hold [142, 147, 138]:

(7.5) MG(λ) = −

(
∞∑
n=1

⟨ψst
n |∂G, ·⟩ℓ2(∂G)ψst

n |∂G
λstn − λ

)−1

,

and

(7.6) MG(λ)−MG(λ
′) =

∞∑
n=1

λ− λ′

(λDn − λ)(λDn − λ′)
⟨∂ψDn |∂G, ·⟩ℓ2(∂G)∂ψDn |∂G.

Here ψn|∂G and ∂ψn|∂G as in the definition of the M-function denote the vectors formed by
the values of the eigenfunctions and by the sums of normal derivatives of the eigenfunctions at
the contact vertices, respectively.

The first formula can be written as

−
(
MG(λ)

)−1
=

∞∑
n=1

⟨ψst
n |∂G, ·⟩ℓ2(∂G)ψst

n |∂G
λstn − λ

.

It determines the M-function uniquely. It is clear that the singularities of −M−1
G (λ) coincide

with those eigenvalues of −∆st
G for which the traces of the eigenfunctions ψst

n |∂G are not identi-
cally zero. These singularities are often called generalised zeroes of MG(λ). They are not zeroes
of the M-function as it might happen that no vector

−→
b exists such that MG(λ

st
n )
−→
b = 0.

The second formula does not determine the M-function uniquely – to recover MG(λ) it is
necessary to know MG(λ

′) – the value of MG at any non-singular reference point λ′. Never-
theless the singularities of the M-function are uniquely determined – they coincide with those
eigenvalues of −∆D

G for which the normal derivatives of the eigenfunctions ∂ψst
n |∂G are not

identically zero.
These formulas not only explain in details the relation between the eigenvalues of the two

Laplacians on G (the operators −∆D
G and −∆st

G ) and the singularities and generalised zeroes of
MG(λ), but provide a clear interpretation for Wigner’s formulas. In [209] it was suggested to
look at scalar functions of the form:

R(E) =
∑
µ

γ2m
Eµ − E

.

Resemblance with formula (7.5) is striking. The main difference is that our formula not only
extends Wigner’s class to matrix-valued functions, but provides clear interpretation of the
weights γ2µ as traces of the eigenfunctions.

Moreover, formula (7.6) can be re-written as

(7.7) MG(λ) = MG(λ
′) +

∞∑
n=1

(
⟨∂ψDn |∂G, ·⟩ℓ2(∂G)∂ψDn |∂G

λDn − λ
−

⟨∂ψDn |∂G, ·⟩ℓ2(∂G)∂ψDn |∂G
λDn − λ′

)
,
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which reminds of Wigner’s formula

R(z) = αz + β +
∑
µ

(
γ2µ

Zµ − z
−
γ2µ
Zµ

)
.

The two formulas coincide in the scalar case if one puts λ′ = 0 and assumes that the linear
terms is absent α = 0.

It is worth to mention that formulas (7.5) and (7.6) are not specific for Laplacians on metric
graphs. Similar formulas can be obtained considering two self-adjoint extensions of a symmetric
operator with equal finite (or even infinite) deficiency indices using for example the language
of boundary triples [35]. To get analogs of formula (7.6) with the linear term present it is
enough to consider extensions which are self-adjoint operator relations (instead of self-adjoint
operators) or fractional transformations of the M-functons.

7.4. M-function and spectral estimates. Let us discuss how M-functions can be used to
obtain spectral estimates and analyse behaviour of the spectrum and of the spectral gap in
particular under surgery transformations.

7.4.1. M-function and spectra of Dirichlet and standard Laplacians. Formulas (7.5) and (7.6)
suggest to divide spectra of the operators −∆D

G and −∆st
G (only discrete eigenvalues are present)

into visible and invisible eigenvalues. Invisible eigenvalues are common eigenvalues for these
two operators with the eigenfunctions satisfying both Dirichlet and standard conditions at the
contact points. These eigenvalues give no contribution into formulas (7.5) and (7.6). These
eigenvalues do not change when two graphs are glued together and are relatively easy to take
care of. Therefore in what follows we shall often assume that all eigenvalues are visible, i.e.,
the corresponding eigenfunctions satisfy just one set of vertex conditions on the contact set
and therefore determine singularities and generalised zeroes of the M-function.

Let us introduce the signed eigenvalue counting function

(7.8) NG(λ) := #
{
λstn : λstn ≤ λ

}
−#

{
λDn : λDn ≤ λ

}
.

This function is right continuous by definition. The function is identically equal to zero for
λ < 0 and is positive for λ ≥ 0, since λ = 0 is an eigenvalue of the standard Laplacian
and inequality λDn ≥ λstn follows from Rayleigh quotient and the fact that the domain of the
quadratic form for −∆st

G is strictly larger than the domain of the quadratic form for −∆D
G .

The eigenvalue counting function satisfies the upper estimate

NG(λ) ≤ |∂G|,

since −∆D
G and −∆st

G are two self-adjoint extensions of the symmetric operator obtained by
restricting these two operators to their common domain – the set of functions from H2(G)
satisfying both Dirichlet and standard conditions on ∂G and just standard conditions at all
inner vertices. This symmetric operator has equal deficiency indices |∂G|, hence the number of
eigenvalues on each interval may differ by at most |∂G|.
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Precise value of the eigenvalue counting function is determined by the number n+ of positive
eigenvalues in the matrix MG(λ):

(7.9) NG(λ) = n+
(
MG(λ)

)
:= #

{
µm : MG(λ)fm = µmfm, µm ≥ 0

}
, λ ̸= λDn .

To prove this formula one may look at the energy curves µm(λ), m = 1, 2, . . . , |∂G| for the M-
matrix. These eigenvalues are nothing else than Steklov eigenvalues for the problem associated
with G and its contact set ∂G. These curves have singularities only at the eigenvalues of LD

G
as can be seen from formula (7.6). The number of curves tending to +∞ when approaching
certain λ0 from the left is equal to the multiplicity of λ0 as an eigenvalue of LD

G . These curves
come back from −∞ to the right of the singularities. All other energy curves are continuous
at these points.

Between the singularities all curves are continuous monotonically increasing functions of
λ ∈ R. Note that we do not claim that the curves are given by analytic functions, also it
is often the case. The analyticity of µj(λ) may be broken when two curves intersect each
other, i.e., when MG(λ) has multiple eigenvalues. The eigenvalues of the standard Laplacian
are precisely those values of λ for which one of the energy curves crosses the line µ = 0.
For negative values of λ the M-function is strictly negative as can be seen form formula (7.5)
taking into account that all λstn are non-negative. Therefore if no Dirichlet eigenvalues λDn are
involved then the number of times the energy curves cross the zero line to the left of λ coincides
with the number of positive eigenvalues of MG(λ). For every simple Dirichlet eigenvalue one
energy curve disappears to +∞ and MG gains an extra negative eigenvalue. Similarly Dirichlet
eigenvalues of higher multiplicity lower the number of positive Steklov eigenvalues accordingly.

Formula (7.9) can be used to determine the number of the eigenvalues of the standard
Laplacian to the left of λ

(7.10) #
{
λstn : λstn ≤ λ

}
= #

{
λDn : λDn ≤ λ

}
+#

{
µm : MG(λ)fm = µmfm, µm ≥ 0

}
.

This formula is proven under the assumption that no invisible eigenvalues occur, but existence
of such eigenvalues does not destroy the formula as they contribute equally to the left and right
hand sides.

7.4.2. Gluing graphs and the spectral gap. Let us discuss behaviour of the spectral gap when
two graphs G1 = (E1,V1) and G2 = (E2,V2) are glued together. Without loss of generality we
may assume that the corresponding contact sets ∂G1 and ∂G2 have equal sizes |∂G1| = |∂G2|.
The new glued graph G = (E,V) is obtained by taking the union of the edge sets E = E1 ∪ E2,
identifying vertices from the two contact sets ∂G1 = ∂G2 and keeping all internal vertices coming
from the original graphs: V = V1 ∪ V2. The standard Laplacian on G is obtained by imposing
standard vertex conditions at the contact vertices ∂G = ∂G1 ≡ ∂G2.

Let M1 and M2 be the two M-functions associated with the contact sets ∂G1 and ∂G2

respectively. Then the M-function for G with the contact set ∂G is equal to the sum of M-
functions

(7.11) M(λ) = M1(λ) +M2(λ).
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This formula holds since we assume standard conditions at the vertices where G1 and G2 are
joined together.

The lowest standard and Dirichlet eigenvalues on metric graphs are always visible from the
corresponding M-functions. The eigenfunctions corresponding to the lowest eigenvalues of the
standard and Dirichlet Laplacians on every (connected) G can be chosen strictly positive [139],
i.e., positive except at those vertices, where Dirichlet conditions are assumed. As a result the
traces at ∂G of the ground state eigenfunctions for −∆st

G are all non-zero, as well as the sums of
normal derivatives for the ground state of −∆D

G . In particular the points λD1 are always singular
points for MG(λ). The point λ1 = 0 is the lowest eigenvalue of −∆G and a solution of the
secular equation

detM(λ) = 0,

since M(0)1 = 0 and λ = 0 is a regular point since all Dirichlet eigenvalues λDn are strictly
positive.

What can be said about the new M-function in terms of the M-functions for the parts glued
together?

• Every singularity of each of Mj(λ), j = 1, 2, is also a singularity of M(λ) since every
Dirichlet eigenfunction on G is also a Dirichlet eigenfunction on at least of one of Gj.

• The eigenvalues of −∆G lying below the ground states of the Dirichlet Laplacians
−∆D

Gj
, j = 1, 2, are always visible in MG(λ). This follows from the fact every such

λstn (G) is a regular point for MG(λ) and any eigenfunction with zero trace on ∂G leads
to a Dirichlet eigenfunction on one of Gj.

• Provided the ground states of the Dirichlet Laplacians on Gj are different, λD1 (G1) ̸=
λD1 (G2), the spectral gap for −∆G cannot exceed λM := max

{
λD1 (G1), λ

D
1 (G2)

}
. This

follows from the elementary estimates:

0 ≤ NG(µ) = #
{
λstn : λstn ≤ λM

}
−#

{
λDn : λDn ≤ λM

}
︸ ︷︷ ︸

≥ 2

⇒ #
{
λstn : λstn ≤ λM

}
≥ 2.

• The spectral gap for −∆G is less than λm := min
{
λD1 (G1), λ

D
1 (G2)

}
if and only if MG

has at least two positive eigenvalues immediately to the left of µ. For sufficiently small
ϵ > 0 we have

n+
(
MG(λm − ϵ)

)
= NG(λm − ϵ) = #

{
λstn : λstn ≤ λm − ϵ

}
︸ ︷︷ ︸

≥ 2

−#
{
λDn : λDn ≤ λm − ϵ

}
︸ ︷︷ ︸

= 0

≥ 2.

When two graphs are glued together, then the new graph has larger total length and therefore
it is natural to expect that the spectral gap is going to decrease. Already gluing two intervals of
different lengths ℓ1 < ℓ2 into a circle graph of length ℓ1+ ℓ2, one observes that the spectral gap
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increases from
(
π
ℓ2

)2
to
(

2π
ℓ1+ℓ2

)2
<
(
π
ℓ2

)2
[144]. In general situation behaviour of the spectral

gap depends on the number n+ of positive eigenvalues of the M-function at the spectral gap of
one of Gj. Note that it is not enough to know the number of positive Steklov eigenvalues for
the original two graphs. We finish this section by providing complete characterization when
does the spectral gap increases gluing arbitrary metric graphs.

Theorem 7.3. The spectral gap for the standard Laplacian does not decrease when two graphs
G1 and G2 are glued together into G

(7.12) λ2(G) ≥ min
j
{λ2(Gj)},

if and only if the M-function for G has the following number of positive eigenvalues:
(1) minj{λ2(Gj)} ≤ minj{λD1 (Gj)} and

lim
ϵ↘0

n+
(
MG(min

j
{λ2(Gj)} − ϵ)

)
= 1;

(2) minj{λD1 (Gj)} < minj{λ2(Gj)} < maxj{λD1 (Gj)} and

lim
ϵ↘0

n+
(
MG(min

j
{λ2(Gj)} − ϵ)

)
= 0;

(3) λD1 (G1) = λD1 (G2) = minj{λ2(Gj)} and

lim
ϵ↘0

n+
(
MG(min

j
{λ2(Gj)} − ϵ)

)
= 1.

It is surprising that the result is determined by the number of positive eigenvalues of MG
and is independent of the properties of the eigenvectors. This property can be traced back to
[36], where the number of negative eigenvalues for the Laplacian with general vertex conditions
was calculated.

We do not have enough space to discuss solution of the inverse problems starting with M-
functions. This approach is well-developed in Chapters 14-15 and 19-23 of [142]. Only in the
case of trees (graphs without cycles) the M-function associated with all degree 1 vertices deter-
mines the metric graph, potential on the edges and vertex conditions (under mild additional
assumptions) [18, 19] and [142, Chapter 20]. To solve the inverse problem for graphs with cy-
cles one may use magnetic boundary control – spectral data depending on the magnetic fluxes
through the cycles. This approach has been developed in [136, 143, 137] and [142, Chapters 22
and 23].

7.5. M-function and isospectrality. M-functions can be successfully used to explain isospec-
trality of some pairs of metric graphs. Some of these graphs are known from the spectral theory
of discrete Laplacians, but new families can be constructed, leading inn particular to new fam-
ilies of discrete graphs. We present here the main ideas, interested readers may consult our
recent paper [145].
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Definition 7.4. Two metric graphs G1 and G2 with contact sets ∂G1 and ∂G2, respectively,
are called Steklov-equivalent if and only if the corresponding M-functions coincide: MG1(λ) =
MG2(λ).

It is clear that two Steklov-equivalent graphs are isospectral, the opposite implication does
not always hold.

We start with two elementary observations:
• Let G1 and G2 be two Steklov-equivalent graphs, then gluing them to the same metric

graph K yields a new pair of isospectral graphs.
• Let the metric graph G contain two Steklov-equivalent subgraphs G1 and G2, then ex-

changing the subgraphs we obtain a graph G ′ isospectral to the original graph G.
The following two methods used procedure, which we call swapping Steklov subspaces

Theorem 7.5. Let K be a metric graph with a degenerate Steklov eigenvalue µ(λ) with the
eigensubspace V (λ), dimV (λ) > 1. Let Qi, i = 1, 2, be two isospectral metric graphs such that

MQ1(λ)|V (λ)
unitarily∼ MQ2(λ)|V (λ),

MQ1(λ)|V (λ)⊥ = MQ2(λ)|V (λ)⊥ .

Then the graphs obtained by gluing together K and Qi, i = 1, 2, are isospectral.

The theorem can be proven by just noting that the corresponding eigenfunctions can be
chosen equal on the common graph K. An example of isospectral graphs constructed using this
approach is presented in Fig. 21.

S4 Q1

Graph Γ′
1.

S4 Q2

Graph Γ′
2.

Figure 21. Two isospectral graphs extending S4.

This example can be simplified as follows.
One may slightly modify the proposed method as.

Theorem 7.6. Let
(
K1,K2

)
and

(
Q1,Q2

)
be two pairs of graphs with the same number of

contact points and each pair having unitarily equivalent M-functions, that is

(7.13) MK1(λ)
unitarily∼ MK2(λ), MQ1(λ)

unitarily∼ MQ2(λ).
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Figure-eight graph. Watermelon-on-a-stick graph.

Figure 22. The simplest pair of isospectral metric graphs.

Let us denote by µK1
s (λ) = µK2

s (λ) and µQ1
s (λ) = µQ2

s (λ) the Steklov eigenvalues. Assume that
for each i and s the eigenspaces for MKi

(λ) and MQi
(λ) can be chosen equal,

V Ki
s (λ) = V Qi

s (λ), s = 1, 2, . . . , S, i = 1, 2.

If in addition the graphs K1 ∪ Q1 and K2 ∪ Q2 (as disjoint unions) are isospectral, then the
graphs G1 and G2 obtained by gluing together Ki and Qi for the respective values of i = 1, 2 are
also isospectral.

Combining the two observations and two methods formulated above one may construct
broad families of isospectral graphs. These families extend existing approaches to construct
isospectral graphs such as

• Seidel switching formulated and analysed in [199, 61, 64];
• Butler–Grout construction from [64, 155, 169].

It seems that proposed approach is an alternative to Sunada construction and its different
modifications [204, 61, 105, 27, 181, 23].

8. Generalizations, applications and further topics

8.1. Geometry of eigenfunctions: nodal domains and hot spots. Much less is known
about the Laplacian eigenfunctions than the eigenvalues. In analogy with the Euclidean case,
two problems of interest are:

(1) Count the number of nodal domains of a k-th eigenfunction ψk, that is, the connected
components of

{x ∈ G : ψk(x) ̸= 0};
(2) Study the hot and cold spots, that is, the number and location of local and global

maxima and minima of the eigenfunction, in particular in the case k = 2.
Problem (1) has been extensively studied on metric graphs, usually under the assumption
that every eigenvalue is simple and no eigenfunction vanishes on any (non-dummy) vertex,
assumptions which are known to be generic (that is, given a fixed graph topology, different
from a loop, the set of all edge lengths for which these assertions hold is of the second Baire
category in RV+). It has been known for many years that under these assumptions the k-th
eigenfunction of the standard Laplacian has between k − β and k nodal domains [40], and
in recent years attention has been devoted to studying the distribution of the so-called nodal
deficit, the difference between the number of nodal domains of ψk and k, see [8, 9]. What can
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happen in the non-generic case where eigenfunctions may vanish at the vertices was studied in
[111]. One may also consider Neumann domains, which are, roughly speaking, the connected
components of {x ∈ G : ψ′

k(x) ̸= 0} [7, 10].
Problem (2) is inspired in part by the hot spots conjecture of Rauch for the Neumann Lapla-

cian on domains, see [63, 116, 123, 203], which asks when the maximum and minimum values
of any second Neumann Laplacian eigenfunction on a domain Ω ⊂ Rd are located on ∂Ω. On
graphs G, natural questions are how many maxima and minima the eigenfunction can have,
and, more nebulously, how these can be distributed throughout G. Relatively little is known,
see [121, 122]. In particular, it is an open problem to show that, generically (in the same sense
as above), the second eigenfunction has exactly one global maximum and one global minimum.

8.2. Spectral correspondence with difference operators. We have already seen a way of
computing the spectrum of ∆G in terms of the zeros of a polynomial in Section 4.3. There is
another, older way of associating the eigenvalues of ∆G with the characteristic polynomial of
a finite-dimensional operator that can be interpreted as a discrete Laplace-type matrix on the
combinatorial graph underlying G. The following is the main result in [37]. To formulate it, we
will need to introduce the normalized Laplacian LG

norm of the combinatorial graph underlying
G: it is given by

LG
normf(v) :=

1

deg[ℓ](v)

∑
w

e∼v

f(v)− f(w)

ℓe

where deg[ℓ] is the metric degree defined by

deg[ℓ](v) :=
∑
e∈Ev

ℓe

Observe that if G is equilateral, then LG
norm = IdV −D−1GAG, where DG is the diagonal

matrix whose entries are the vertex degrees and AG.

Theorem 8.1. Let G be an equilateral metric graph, with underlying combinatorial graph G.
Let us denote by κ the number of its connected components and by κb the number of its connected
components that are additionally bipartite.

If u is an eigenvector of −∆G with associated eigenvalue λ > 0, then the corresponding vector
u|V ∈ CV of vertex evaluations is a (right) eigenvector of the normalized Laplacian LG

norm: more
precisely,

(8.1) LGu|V = (1− cos
√
λ)u|V.

Conversely, if 1− cos
√
λ > 0 is an eigenvalue of LG of multiplicity mult(cos

√
λ) and u|V is

an associated eigenvector, then λ is an eigenvalue of −∆G and u|V is the vector of node values
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of some eigenvector associated with the eigenvalue λ. The multiplicities are

mult(λ) =


κ if λ = 0,

mult(1− cos
√
λ) if sin

√
λ ̸= 0,

|E| − |V|+ 2κ if cos
√
λ = 1, λ > 0,

|E| − |V|+ 2κb if cos
√
λ = −1, λ > 0.

λ

cos
√
λ

1

α...

...
β

π2
0

µ (π −
√
ν)2 (π +

√
ν)2 (2π −√

µ)2

Figure 23. On the abscissa, the eigenvalues of −∆G are plotted in correspon-
dence with the associated eigenvalues of T on the ordinate axis.

In other words,
µ2(G) = arccos(1− µ2(G))

2

if µ2(G) ∈ [0, 2), where µ2(G) denotes the lowest positive eigenvalue of LG
norm.

Similar results have been recovered in [175] (whenever standard conditions are replaced by
Dirichlet conditions in some nodes), [38] (where anti-Kirchhoff conditions are considered), in
[75, 180, 153] (for infinite metric graphs), and [74, Section 3 and Section 4] (for Schrödinger
operators with nonzero potential).

In the case of non-equilateral graphs, it is easy to see that the relation (8.1) cannot generally
hold. However, the following inequality has been obtained in [125] and later extended to all k
in [184, Corollary 2.2].

Proposition 8.2. Let G be connected and such that the underyling combinatorial graph is
simple, i.e., it contains no loops and no parallel edges. Then

µk(∆G) ≤
π2

2
µk(LG) for all k = 1, . . . , |V|.

A smart application of these spectral correspondence principles has allowed for estimates on
µ2(G) based on the lowest positive eigenvalue of the discrete Laplacian on an appropriate graph:
a prototypical case is presented in[14], where good use is made of spectral upper estimates on
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the underlying combinatorial graph G. These estimates have been further developed in [184],
where the bounds

µk(G) ≤ C
d
[ℓ]
max(g + k)

ℓ2min|G|
and µk(G) ≤ C

dmax(β + k − 1)(g + k)

|G|2

(respectively for small and large k), in terms of the genus g of G and the (metric) degree deg[ℓ]

have been deduced using sophisticated techniques including the kissing caps invented in [202].
The techniques presented in Section 5.3.3 have been tweaked in [170] to also derive the lower
bound

µk(G) ≥ 2π2αk(Gd) min
1≤j≤N

1

|Cj|2
, k = 1, . . . , N,

whenever G is planar or, more generally, it admits a cycle double cover (Ci)1≤j≤N : this lower
bound entails the eigenvalues αk, k = 1, . . . , N of the normalized Laplacian of Gd, a weighted
version of the dual graph induced by these cycles.

8.3. Infinite metric graphs. Infinite metric graphs have been studied since [158]. A very
rich theory of infinite metric graphs has been developed since the 1990s [5, 75, 76, 77, 70, 71].
Modern results about spectrum, extension and potential theory, and heat kernels have been
obtained ever since in [201, 178, 156, 62, 69, 166, 104, 73, 188, 153, 128, 93, 115, 177, 125, 33].
In this context, the role of graph ends was implicitly touched upon in [173, 72, 174] and has
been fully appreciated in [124]: ends can be understood as “points at infinity” of infinite metric
graphs and they are connected in a subtle way to the deficiency indices and, in particular, to
the self-adjointness of the Laplacian, see also [126] and the recent survey [127]. If a graph end
has a suitably small neighborhood of finite volume, then additional conditions (say, of Dirichlet
or Neumann type) have be to imposed there, leading to new Laplacian realizations. The issue
of the discreteness of the spectrum of these realizations has been discussed in [125, 90]: it
turns out that the spectrum can be discrete even though the graph has infinite volume. The
possibility of a Weyl-type eigenvalue asymptotics for certain fractal-like infinite metric graphs
has been studied in [120]. Indeed, self-similar infinite metric graphs can often be interpreted
as fractals, see e.g., [13]. Also, there is a very broad literature about the application of Floquet
theory to metric graphs including [179, 34]. More recently, a notion of convergence for sequences
of sparse combinatorial graphs that goes back to [39] has been adapted in [16] to the case of
metric graphs to prove sophisticated results about the band structure of the spectrum of infinite
metric trees: this has made possible to demonstrate quantum ergodicity (i.e., eigenfunctions
with eigenvalues lying in a certain band are spatially delocalized) in [15, 17].

8.4. Heat kernels. Because the Laplacian with standard vertex conditions is a self-adjoint,
positive semi-definite operator, by the Spectral Theorem it generates a strongly continuous
semigroup of contractions. Indeed, this semigroup consists of integral operators whose kernel
pG = pGt (x, y) is usually referred to as heat kernel. It turns out that the heat kernel encodes
much information about the metric graph. In particular, the heat trace TrG(t) :=

∫
G p

G
t (x, x) dx

– especially its short-time asymptotics – allows one to read off the total length of the metric
graph and its first Betti number: this was first proved by Roth [194, 195] (a simple corollary
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of Roth’s trace formula was presented as Theorem 3.20) and comparable results have been
re-discovered several times, and generalized to more general vertex conditions: we refer to
[132, 148, 129, 56, 55].

Using Roth’s formula for the heat kernel, it can be proved that the point evaluations of
any sequence (ψn)n∈N of eigenfunctions of −∆G at any point of the graph is Cesàro square
summable: the following local Weyl law was proved in [60, Theorem 4.1].

Theorem 8.3. For any x ∈ G there holds

lim
N→∞

N∑
j=1

ψj(x)
2 =

2

deg(x)|G|
,

where deg(x) is the degree of x if x ∈ V, or 2 else.

Another proof based on an ergodic theorem for functions supported on the secular manifold
has been obtained in [28]. A generalization of Theorem 8.3 for Schrödinger operators with
δ-conditions has been obtained in [54]: by its means, it could be proved in [54, Theorem 1] that
the sequence of discrepancies of the eigenvalues of a Schrödinger operator from those of the
free Laplacian on the same G is Cesàro summable. A special case of this assertion was proved
in [190].

8.5. Torsional geometry. If Dirichlet conditions are imposed on a nonempty vertex set VD

in G, then
∫∞
0

∫
G

∫
G p

G
t (x, y) dx dy – or equivalently the L1(G × G)-norm of the Green function

of ∆G – is called torsional rigidity T (G;VD) of G: it is an old notion that was introduced by
Pólya for planar domains, and in [65, 83] on metric graphs. It turns out that this quantity
can be used to estimate λ1(G;VD) both from above and from below. Indeed, the Pólya–Szegő
Inequality

λ1(G;VD)T (G;VD) < |G|

and the Kohler-Jobin Inequality(
π

3
√
24

)2

≤ λ1(G;VD)T (G;VD)
2
3

have been proved in [171] (with the latter bound improved by a factor 2
2
3 if the graph is doubly

edge connected); a similar result in the more general context of metric measure spaces was
obtained in [164]. An interesting feature of these estimates is that the torsional rigidity T (G)
can be easily computed by solving an algebraic system in |V \V0| (the number of non-Dirichlet
vertices) unknowns and equations that involves a weighted version of the discrete Laplacian.

Another lower estimate on λ1(G;VD) in terms of the maximum of a so-called torsion functions
has been originally observed by Donsker–Varadhan [86, 87] and later re-discovered in [20] and
then again in [101]: the abstract version in [168] can be applied to metric graphs, too, as long
as Dirichlet conditions are imposed on at least one vertex.
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8.6. Spectral Minimal Partitions. Imagine one wants to subdivide a metric graph G into
k parts. An arguably natural choice is to look for the nodal domains of a k-th eigenfunction
ψk, i.e., for the connected components of the set {x ∈ G : ψk(x) ̸= 0}. Indeed, it was shown
in [102] (under certain technical assumptions, later removed in [111]) that ψk has at most k
nodal domains, and this bound is sharp as it is attained by trees [4, 187, 186] (this has been
used already in the proof of Theorem 6.24); indeed, it is rigid, as it is only attained by trees
[21].

So, a different approach is needed if one looks for a spectral way of partitioning G. One
possible way of doing so is based on the theory of spectral minimal partitions [108, 57]: roughly
speaking, one partitions G in k connected subgraphs (clusters), imposes Dirichlet conditions at
the cutpoints, takes the maximum among all the ground state energies on such clusters, and
then infimizes among all possible way of subdividing G into k clusters. It was proved in [118]
that such infimum Lk(G) is attained – i.e., there exists a spectral minimal k-partition – for all
G and all k. Remarkably, such spectral minimal energies satisfy a Weyl-type asymptotic [111]:
in particular, it is known

lim
k→∞

Lk(G
k2

=
π2

|G|2
for all G,

which can be regarded as a metric graph counterpart of Caffarelli and Lin’s – hitherto open –
hexagonal conjecture for planar domains [67].

8.7. Symmetrization and NLS equations. A slightly adapted version of the symmetriza-
tion method discussed in Section 5.1 has also been used to study nonlinear problems, in par-
ticular Nonlinear Schrödinger (NLS) equations, mostly on unbounded graphs. In a series of
landmark papers [1, 2, 3], the authors studied minimizers (so-called ground states), graphs G
with at least one edge of infinite length (half lines), of the NLS energy

EG(u) =
1

2

∫
G
|u′|2 dx− 1

p

∫
G
|u|p dx

on H1(G) under a mass constraint (i.e. fixed L2-norm) in the subcritical regime 2 ≤ p < 6, that
is, in which the embedding H1(G) ↪→ Lp(G) is continuous. Critical points of this functional are
solutions of the equation

u′′ + |u|p−2u = λu

edgewise in G, with standard conditions at any vertices. We note that ground states exist and
are explicitly known on both G = R and G = R+, being given by a properly scaled soliton (sech
function), and that minER+ < minER.

The authors showed that inf EG is always between minER+ and minER, but that existence
or non-existence of minimizers depends subtly on the topology of the graph. In particular, if
G satisfies what is known as the (H)-condition (essentially, that upon deletion of an arbitrary
point of G, the resulting graph does not have any bounded connected components; equivalently,
for any x ∈ G there are at least two distinct paths to infinity emanating from x), then the
infimal energy EG can attain is equal to ER, but the infimum is attained if and only if G can
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be obtained from R by gluing a finite number of points to create a pumpkin chain of locally
equilateral 2-pumpkins with two copies of R+ attached to one of its antipodal points.

The key point is that the (H)-condition guarantees that the level surfaces St (see (5.5)) of
any positive function ψ ∈ H1(G) will have size #St ≥ 2 for almost all t ∈ (0, ∥ψ∥∞), allowing
one to symmetrize ψ onto a positive function in H1(R) which is symmetrically decreasing about
0 ∈ R, decreasing its gradient; one can then analyze when equality is possible. Without the
(H)-condition, in general one only knows that #St ≥ 1 and can thus only symmetrize onto
monotonically decreasing functions on R+; in this case there do exist graphs admitting ground
states.

A large literature has emerged studying such NLS equations in various regimes (including the
critical and supercritical cases, p = 6 and p > 6), and variants (for example, quintic rather than
cubic nonlinearities, or with a potential, or other vertex conditions), both for ground states
and other positive solutions and sign-changing solutions. It would go well beyond the scope of
this article to give a proper survey of the literature on NLS on metric graphs, a topic which
warrants its own survey – instead, we refer to the recent papers [84, 88] – , but we mention
that there are some other parallels between techniques used, for example, some surgery-type
principles, such as the idea of gluing vertices, and studying when this does or does not change
the infimal value of the functional (already present [2, Theorem 2.5]), are also used here, having
been developed independently of the analysis of the spectral geometry of the Laplacian.

8.8. p-Laplacians. Another nonlinear problem related to the Laplacian, which is arguably a
more direct variant, is the p-Laplacian, which corresponds to the equation

(8.2) −(|u|p−2u′)′ = λ|u|p−2u

edgewise in the compact metric graph G, plus a suitable adaptation of standard conditions, for
1 < p <∞, the cases p = 1 and p = ∞ being singular.

For 1 < p <∞, the corresponding weak formulation is given in W 1,p(G) = {u ∈ Lp(G) : u′ ∈
Lp(G)}, and in place of the spectral gap one studies the smallest positive critical point of the
functional

Ep(u) :=

∫
G
|u′|p dx

subject to the constraint that ∥u∥Lp(G) = 1. This was done in [45], where an isoperimetric-type
inequality is proved using a p-variant of the symmetrization method from Section 5.1.

Alternatively, one may impose Dirichlet conditions on one or more vertices and then study
the infimum of Ep among all W 1,p

0 -functions of Lp-norm 1, the corresponding eigenfunction is
a ground state. This was done in [85], where the authors also studied the limits p → 1 and
p → ∞, showing that, just as for Euclidean domains, there is convergence of the eigenvalue
and eigenfunction to their counterparts for the 1- and the ∞-Laplacians, which the authors
describe.

In the former case, the correct setting is the space of functions of bounded variation, and the
eigenvalue corresponds to a so-called Cheeger cut of the graph. A theory of BV functions on
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graphs was developed, and links to the Cheeger problem were studied, in [161, 162], see also
[163].

There are still many open problems for the p-Laplacian on compact graphs, including to
show that the sequence of variational critical points of Ep, obtainable by the usual Ljusternik–
Schnirelman method, actually represent all solutions of the p-Laplace equation (8.2) inW 1,p(G),
something which is known on intervals [89] but unknown on Euclidean domains. One could
also consider (p, q)-variants, where one fixes a suitable Lq-norm of the function, rather than
the Lp-norm. Developing surgery principles for these eigenvalues also remains to be done. A
version of Weyl’s law for the Ljusternik–Schnirelman variational eigenvalues of (8.2), and an
analysis of the number of nodal domains of the corresponding eigenvalues, is given in [111].

8.9. Other self-adjoint realizations of the Laplacian. Just like in the case of individ-
ual intervals, discussed in Remark 2.2, we can consider infinitely many further self-adjoint
realizations of the Laplacian on a metric graph. In particular, the transmission condition
parametrization

(8.3)
(
u(0)
u(L)

)
∈ Y,

(
−u′(0)
u′(L)

)
+R

(
u(0)
u(L)

)
∈ Y ⊥

for any subspace Y of C2|E| and any self-adjoint operator R on Y , has been popularized in
[134]. Standard vertex conditions can be represented in this formalism by imposing that Y is
an appropriate space associated with the so-called signed incidence matrix of any orientation
of the metric graph G, see [38, Example 2.4] for details.

Various other parametrizations have been considered, among others, in [130, 106, 131, 100]
(see [49, Thm. 1.4.4] for a side-by-side comparison of most of them). More recently, several
classes of non-standard vertex conditions inducing (possibly non-self-adjoint) Laplacian real-
ization that do or dot preserve relevant quantum mechanical symmetries have been studied
in [114, 94, 113, 29].

While the Laplacian with standard conditions (and possibly Dirichlet conditions on a nonempty
subset of V) has nonnegative eigenvalues only, general self-adjoint realizations may certainly
have negative eigenvalues for suitable coefficient matrices R: this is true already in the case of
δ-conditions as introduced in Remark 3.24. A formula for the number of negative eigenvalues
has been derived in [36].

For a recent survey of the spectral theory of Laplacians and Schrödinger operators on metric
graphs with δ and δ′ conditions, including spectral geometric considerations, see [193].
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