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Abstract. The theory of C0-semigroups is a classical tool to study linear

autonomous evolution equations in Banach spaces. Yet, there are many evolu-
tion equations whose solution semigroup does not satisfy the C0-property. To

study them, a large variety of semigroup theories has been developed beyond

the C0-theory. In this article, we survey those developments and discuss and
compare different types of semigroup theories.
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1. Introduction

One-parameter semigroups of operators provide a framework to study the so-
lutions to linear autonomous evolution equations. Let A be an (in general, un-
bounded) operator on a Banach space X. We are interested in the solution u :
[0,∞) → X of the evolution equation

u̇(t) = Au(t) for t ∈ [0,∞),

u(0) = u0,

where u0 ∈ X. If the solutions (in a suitable sense) exist for all u0 ∈ X, then – due
to the linearity of the problem and the fact that A does not depend on the time
variable – one expects that for each t ∈ [0,∞) the map T (t) : X → X that maps
u0 to the values u(t) of the solution at time t, is linear and satisfies the properties
T (s + t) = T (s)T (t) and T (0) = idX . Moreover, if the solution at time t depends
continuously on the initial value, then T (t) will be a bounded operator on X.

The family (T (t))t≥0 is a one-parameter operator semigroup or, as we shall briefly
say, a semigroup. A major point of interest is the regularity of the solutions u
with respect to the time variable t. In general, one cannot expect u(t) to be
differentiable with respect to t for every initial value (and hence, concepts such
as mild solutions rather than classical solutions enter the stage). However, for a
large class of concrete evolution problems, the solutions u are continuous mappings
from [0,∞) to X. In other words, the semigroup (T (t))t≥0 is a strongly continuous
mapping from [0,∞) into the space L(X) of bounded linear operators on X. Such
strongly continuous semigroups – or, for short, C0-semigroups – have been studied
in great detail since the middle of the 20th century. We refer, for instance, to
the monographs [48, 65, 72, 109] and the introductory textbook [49] for a thorough
treatment of the theory.

However, there is also a large class of evolution equations for which the solution
does not depend continuously (with respect to the norm on X) on the time variable
t. There are various theoretical frameworks to study such semigroups and hence
go beyond the theory of C0-semigroups. This survey gives an overview of several
of them.

Organization of the survey. The structure of the paper is as follows. In Sec-
tion 2, we motivate by several concrete examples why one would like to develop the
theory of operator semigroups beyond the limits of C0-semigroups. In Section 3, we
begin with a gentle introduction, revisiting linear autonomous evolution equations
in finite dimensions. We aim to stress the interrelation of three central objects –
the semigroup, its generator, and its resolvents – which will be very helpful to guide
us through the infinite dimensional realms later. In Section 4, we set the stage for
the infinite-dimensional theatre by recalling some essentials of the C0-semigroup
theory. Readers well-versed in C0-semigroups can safely skip Sections 3 and 4. Yet,
we chose to include them for those readers who might need other types of semi-
groups in their research without first studying the field of C0-semigroups in detail.
Section 5 delves into the core of the article, providing an overview of various semi-
group concepts beyond C0-semigroups. In Section 6, we focus on a specific class of
semigroups: those that leave the positive cone in a function space or Banach lattice
invariant. In the C0-case, positive semigroups entail an intriguing theory, and we
elaborate on how certain features from this theory remain true beyond the C0-case.



BEYOND STRONG CONTINUITY 3

2. Equations with low time regularity: motivating examples

2.1. Parabolic equations. If one considers parabolic equations of the form

u̇(t) = Au(t),

u(0) = u0

on the spatial domain Rd, where A is a second-order elliptic differential opera-
tor, semigroups that are not strongly continuous naturally occur in a number of
contexts.

Even for the heat equation – i.e., if A is the Laplace operator ∆ – the solution
only depend continuously on the initial value u0 if one works in a sufficiently “small”
function space:

Example 2.1 (The heat semigroup on Cb(Rd)). Let Cb(Rd) denote the space of
bounded continuous scalar-valued functions on Rd. For a given initial function
u0 ∈ Rd, the solution u : [0,∞) → Cb(Rd) of the heat equation

u̇(t) = ∆u(t),

u(0) = u0

is given by u(t) = kt ⋆ u0, where kt : Rd → R is the heat kernel at time t. For
general u0 ∈ Cb(Rd) ones does not have u(t) → u(0) with respect to the sup norm
as t ↓ 0.

For the heat equation u̇(t) = ∆u(t) this issue can be solved by focusing on
different function spaces such as, for instance, Lp(Rd) for p ∈ [1,∞) . But for more
general elliptic operators – in particular those with unbounded coefficients, see for
instance [102] – it is quite natural to have solutions that do not converge uniformly
to the initial value as t ↓ 0.

2.2. Koopman semigroups on large state spaces. Koopman semigroups are
semigroups that describe the behaviour of a dynamical system on a state space X
by an associated action on a function space. Let us describe the precise notion in
the following two definitions:

Definition 2.2 (Semiflows). Let Ω be a topological space. A family
(
φ(t)

)
t∈[0,∞)

of continuous mappings φ(t) : Ω → Ω is called a semiflow on Ω if φ(0) = idΩ and
φ(s+ t) = φ(s) ◦ φ(t) for all s, t ∈ [0,∞).

Definition 2.3 (Koopman operators and semigroups). Let Ω be a topological
space and let Cb(Ω) denote the space of all bounded and continuous scalar-valued
functions in Ω, endowed with the sup norm.

(a) For a continuous map φ : Ω → Ω we call the bounded linear operator
Tφ : Cb(Ω) → Cb(Ω) given by

f 7→ f ◦ φ
the Koopman operator or composition operator associated to φ.

(b) Let
(
φ(t)

)
t∈[0,∞)

be a semiflow on Ω. The family of Koopman operators(
Tφ(t)

)
t∈[0,∞)

is called the Koopman semigroup or the composition semi-

group associated to the semiflow.

The Koopman semigroup of a semiflow satisfies Tφ(0) = idCb(Ω) and Tφ(t+s) =
Tφ(t)Tφ(s) for all s, t ∈ [0,∞) – i.e., the Koopman semigroup is itself a semiflow on
the space Cb(Ω).

Note that we did not assume that a semiflow satisfies any time regularity prop-
erty. But even if the mapping [0,∞)×Ω → Ω, (t, x) 7→ φ(t)(x) is jointly continuous,
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this does not imply good time continuity properties of the Koopman semigroup.
As a simple example, one can demonstrate this by the shift on R:

Example 2.4 (The shift semigroup on the real line). Define a semiflow
(
φ(t)

)
t∈[0,∞)

on R by setting φ(t)(x) := x+ t for all x ∈ R and t ∈ [0,∞). Then the associated
Koopman semigroup on Cb(R) shifts all functions to the left.

Clearly, the function [0,∞)×R → R, (t, x) 7→ φ(t)(x) = t+ x is jointly continu-
ous. However, if f ∈ Cb(R) is not uniformly continuous, one can easily check that
the mapping

[0,∞) → Cb(R),
t 7→ Tφ(t)f = f( · + t)

is not continuous with respect to the sup norm on Cb(R).

The problem with the shift semigroup could be resolved by considering smaller
function spaces, for instance, the space of uniformly continuous and bounded func-
tions. However, this no longer works if some of the mappings φ(t) are not uniformly
continuous themselves. This makes a theory of Koopman semigroups that does not
rely on strong continuity desirable. A step towards such a theory is presented
in [57].

2.3. Transport processes on graphs. Dynamic processes that are described by
shifts as in Example 2.4 can be generalized to network structures.

Example 2.5 (Network flows). Consider a finite, directed graph (V,E), where V
denotes the set of all vertices and E denotes the set of all edges. We assign a length
ℓe ∈ (0,∞) to each edge e ∈ E. Then we identify each edge e with the interval [0, ℓe]
where 0 corresponds to, say, the initial point of the edge and ℓe to the terminal
point of the edge (but those choices are, of course, arbitrary, and are sometimes
written down differently in the literature). Consider, at each time t ≥ 0, a function
ue(t) : [0, ℓe] → R on the edge e which is subject to a transport process with a fixed
velocity ve ∈ (0,∞). This process is described by the partial differential equation

u̇e(t) = −veu′e(t),

where u′e(t) denotes the spatial derivative and u̇e(t) denotes the derivative with
respect to t (which is computed in a suitable Banach space).

To take the graph structure into account one assumes that, at each vertex v, all
the mass that enters v is immediately redistributed to the outgoing edges. If v has
more than one outgoing edge, one needs to assign weights to decide which one the
mass gets distributed to. This redistribution of mass can be encoded by boundary
conditions that one adds to the differential equations for the ue. This way one ends
up with an evolution equation on a state space that is the sum of functions spaces
over the intervals [0, ue]. For instance, if we are interested in the behaviour with
respect to the L1-norm, we consider the space ⊕e∈EL

1([0, ℓe]).
A concrete example of such a graph is shown in Figure 1. In this example, only

the vertices 2 and 5 have more than one outgoing edge and hence, we only need
to assign weights to these outgoing edges. For all vertices with only one outgoing
edge, the weight is tacitly assumed to be 1.

Such transport processes on graphs are sometimes referred to as network flows.
A detailed study on them by means of C0-semigroups goes back to the seminal
paper [83]. Afterwards, the topic was studied in a great number of papers. To
name just a few examples, we mention space-dependent velocities [101], infinite
networks [42,43] and delays in the vertices [23].
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Figure 1. A transport process on a directed graph

If one studies the flow on state spaces over the edges that are less well-behaved
– for instance on L∞ [33] or on spaces of measures [39] – one loses the strong
continuity. Hence, tools beyond C0-semigroup theory become necessary to study
network flows on such transport processes.

2.4. Abstract constructions that destroy continuity. While there is a well-
developed theory of strongly continuous semigroups (see Section 4 for details),
this class of semigroup is not stable under a number of standard constructions.
We discuss a few such constructions in the following examples. Throughout those
examples, we freely use notions from the theory of C0-semigroups that are explained
in Section 4.

Example 2.6 (Dual semigroups). Let T = (T (t))t≥0 be a C0-semigroup on a
Banach space X. The family of dual operators T ′ = (T (t)′)t∈[0,∞) is also a C0-
semigroup if X is reflexive, but it need not be a C0-semigroup if X is non-reflexive.
For instance, the left shift semigroup on L1(R) is a C0-semigroup, but its dual
semigroup – the right shift semigroup on L∞(R) – is not strongly continuous.

An extensive theory of the duals of C0-semigroups is available and is presented
in the monograph [116].

Example 2.7 (Semigroups on ℓ∞(I;X)). Let T = (T (t))t≥0 be a C0-semigroup
on a Banach space X. Let I be a non-empty set and let ℓ∞(I;X) denote the set of
all bounded families x = (xi)i∈I together with the sup norm

∥x∥∞ := sup
i∈I

∥xi∥X .

Consider the semigroup S = (S(t))t∈[0,∞) on ℓ
∞(I;X) given by(

S(t)x
)
i
= T (t)xi

for all x ∈ ℓ∞(I;X) and i ∈ I. It is not difficult to check that, if I is infinite, then
S is a C0-semigroup if and only if T is uniformly continuous. Hence, the strong
continuity of T does not carry over to S, in general.

This construction occurs, for instance, in [61, Section 3] to show operator norm
convergence in an approximation theorem for operator semigroups, but for the
reason pointed out above the argument is only applicable in case that the generator
is bounded.

Example 2.8 (Semigroups on ultrapowers). This is a slightly more involved – and
more useful – variation of Example 2.7. Again, let T = (T (t))t≥0 be a C0-semigroup
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on a Banach space X and let I be a non-empty set. Consider a filter F ⊆ 2I on
I and recall that a family x = (xi)i∈I in X is said to converge to a vector x0 ∈ X
along the filter F if the set {i ∈ I | ∥xi − x0∥ < ε} belongs to F for each ε > 0. For
instance, if I = N and if F is the so-called Fréchet filter that consists of all co-finite
subsets of N, then convergence along F is precisely the usual notion of convergence
of sequences.

Let c0,F (I;X) denote the closed subspace of ℓ∞(I;X) that consists of those
families that converge to 0 along F . The quotient space

XF := ℓ∞(I;X)/c0,F (I;X)

is the F-power of X; we refer to such spaces as filter powers of E. For a bounded
linear operator R ∈ L(X) the induced operator

ℓ∞(I;X) → ℓ∞(I;X)

(xi)i∈I 7→ (Rxi)i∈I

leaves c0,F (I;X) invariant and thus induces a bounded linear operator RF on the
filter power XF .

The main idea here that underlies this construction is to ignore “what happens
at finite indices”. Hence, when using filter products one will typically use a filter F
that contains all co-finite subsets of the index set I – for instance, F could be, as
indicated above, the Fréchet filter that consists of all co-finite subsets of I. Yet, for
such F the filter power XF does sometimes not behave very nicely since it destroys
a lot of nice properties of X. For instance, if X is finite-dimensional and F is the
Fréchet filter, then XF will be a non-reflexive non-separable Banach space. For this
reason, it is often better to choose F to be an ultrafilter that contains the Fréchet
filter. In this case, one calls the filter power XF an ultrapower of X.

Ultrapowers tend to be quite well-behaved. For instance, one has XF = X for
finite-dimensional X. For infinite-dimensional X, an ultrapower XF will still be
much larger than X, but the construction will preserve a number of nice geometric
properties. For instance, if X is a Hilbert space, every ultrapower of X is again a
Hilbert space. If X is an Lp-space, so is every ultrapower of X. And X is super
reflexive if and only if every ultrapower of X is reflexive (equivalently, super reflex-
ive). For an overview of ultrapowers of Banach spaces and the slightly more general
notion of ultraproducts (where one starts with different Banach spaces Xi rather
than a single one), we refer to the classical survey article by Heinrich [70]. Ultra-
products are a very common tool in the geometry of Banach spaces. In operator
theory, lifting an operator R to an ultrapower is a very powerful tool to study the
spectrum σ(R); see for instance [112, Section V] and [103, Chapter 4] for details.

Those techniques have been adapted to positive C0-semigroups. The main chal-
lenge here – which brings us back to the topic of this survey – is that for a
C0-semigroup T = (T (t))t≥0 on a Banach space X the operator family TF :=
(T (t)F )t∈[0,∞) on an ultrapower (or on a more general filter power) XF will, while
it still satisfies the semigroup law, typically not be strongly continuous. To resolve
this, one can either restrict the semigroup TF to its space of strong continuity
or one can instead choose to only lift the resolvent of the generator rather than
the semigroup itself to XF (which results in a so-called pseudo-resolvent on XF ).
These techniques are very powerful in the spectral theory of positive semigroups,
see [106, Section C-III].

Slightly different applications of ultraproducts and ultrapowers in a semigroup
context are, for instance, the proof of Fendler’s semigroup version [58] of the
Akcoglu–Sucheston dilation theorem on Lp and the proof of a special case of the
classical Markov group conjecture about C0-groups on ℓ

1 [63].
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Example 2.9 (Implemented semigroups). Let S = (S(t))t∈[0,∞) as well as T =
(T (t))t≥0 be C0-semigroups on a Banach spaceX. Then the implemented semigroup
R = (R(t))t∈[0,∞) is the semigroup on the operator space L(X) defined by

R(t)C = S(t)CT (t)

for all C ∈ L(X) and all t ∈ [0,∞). The semigroup R will typically not be strongly
continuous unless S and T are uniformly continuous.

Such implemented semigroup occur, for instance, in the context of quantum
mechanics whereX is a Hilbert space, T is the solution (semi)group of a Schrödinger
equation, and S is its adjoint semigroup. For a simple illustration of this in finite
dimensions we refer, for instance, to [24, Definition 3.26]. IfX is a Hilbert space and
one restricts the semigroup R to the space K(X) of compact operators, it becomes
strongly continuous again. The implemented semigroup R on L(X) is then the
bidual of R|K(X) and the dual semigroup of R|K(X) acts on the space of trace class
operators and describes – in the quantum mechanical context mentioned above –
the evolution of the quantum system on mixed states.

3. Starter: semigroups in finite dimensions

To provide context for the discussion of semigroups that are not strongly con-
tinuous, we start with an outline of some main ideas from C0-semigroup theory in
Sections 3 and 4. Readers who are well-versed in C0-semigroup theory can safely
skip these sections.

In fact, we find it quite illuminating to start with the finite-dimensional case,
which we do in the present Section 3. That means that we essentially discuss linear
autonomous ODEs and matrix exponential functions in this section. Our exposition
is unlikely to teach the reader something new about this classical topic, though.
Our point is rather to represent this topic from a particular perspective that helps
to understand the infinite-dimensional situation in Section 4.

3.1. The initial value problem. The theory of one-parameter semigroups is
mainly about solving linear autonomous differential equations, also referred to as
Cauchy problems. In finite dimensions, such problems have the following form:

For a matrix A ∈ Cn×n and an initial vector x0 ∈ Cn we look for a (continuously)
differentiable function x : [0,∞) → Cd satisfying the initial value problem{

ẋ(t) = Ax(t) for all t ≥ 0,

x(0) = x0.
(3.1)

The solution x to this problem can be written down explicitly in terms of the matrix
exponential function: it is given by

x(t) = etAx0 for all t ≥ 0,

where etA is defined as the exponential series etA :=
∑∞

k=0(tA)
k/k!. This series

converges absolutely in Cn×n.
Let us mention different approaches to show that this indeed gives the solution

to (3.1): The most common approach is to prove directly – as in the scalar-valued
case – that the matrix exponential function t 7→ etA is differentiable with derivative
d
dte

tA = AetA. Hence, x(t) = etA satisfies the differential equation in (3.1). The

initial condition follows from the simple observation e0A = id. Alternatively, one
can approach the situation from the general theory of (nonlinear) ODEs and use the
Picard–Lindelöf iteration to compute the solution x of (3.1). The Picard–Lindelöf

iterates turn out to be the partial sums of the series
∑∞

k=0
(tA)k

k! x0.



8 SAHIBA ARORA, BÁLINT FARKAS, JOCHEN GLÜCK, AND ABDELAZIZ RHANDI

3.2. Three central objects: semigroup, generator, resolvent. One com-
monly associates three different objects to the initial value problem (3.1) which
are referred to as the semigroup, the generator, and the resolvent. In this subsec-
tion, we briefly motivate the meaning of these notions.

The semigroup. For a matrix A ∈ Cn×n, the mapping t 7→ etA satisfies the proper-
ties

e(s+t)A = esAetA for all s, t ≥ 0 and e0A = id .

The right equality above is an immediate consequence of the definition of etA and
the property on the left can be checked as in the scalar case by writing esAetA, which
is a product of two series, as a convolution. Alternatively, the formula follows from
the fact that, for each x0 ∈ Cd, the mapping x : t 7→ etAx0 solves the autonomous
initial value problem (3.1).

The formula e(s+t)A = esAetA means that the mapping t 7→ etA is a semigroup
homomorphism between the additive semigroup [0,∞) and the multiplicative semi-
group Cn×n (and in fact, it is even a monoid homomorphism as it maps the neutral
element to the neutral element). In operator theory, it is common to abbreviate
the word “semigroup homomorphism” in this context and to simply call the family
(etA)t≥0 a semigroup.

The generator. This word refers to A itself. The mapping t 7→ etA is differentiable
and its derivative at t is the matrix AetA – which is precisely why the solution to the
initial value problem (3.1) can be expressed by means of the semigroup (etA)t≥0.
In particular, the derivative of t 7→ etA at the time t = 0 is the matrix A and it is
common to express this property by saying that A generates or is the generator of
the semigroup (etA)t≥0.

The resolvent. The complement ρ(A) := C \ σ(A) of the spectrum of A is called
the resolvent set of A and the mapping

R( · , A) : ρ(A) → Cn×n,

λ 7→ R(λ,A) := (λ id−A)−1

is referred to as the resolvent of A. If |λ| > ∥A∥ (or, more generally, if |λ| is larger
than the modulus of every eigenvalue of A), the resolvent at λ can be computed

by the geometric series. This gives R(λ,A) =
∑∞

k=0
Ak

λk+1 and is, for n ̸= 1, more
commonly referred to as the Neumann series representation of the resolvent.

To understand the importance of the resolvent, it is very instructive to consider
the Laplace transform: For a – say for the moment, finite-dimensional – normed
space V over C and a measurable function f : [0,∞) → V that satisfies the expo-
nential estimate ∥f(t)∥ ≤Meωt for constants M ≥ 0, ω ∈ R and all t ∈ [0,∞), the
Laplace transform of f is the mapping

f̂ : {λ ∈ C | Reλ > ω} → V,

λ 7→
∫ ∞

0

e−λtf(t) dt.

If x : [0,∞) → Cn is the continuously differentiable function that solves the initial
value problem (3.1), then its Laplace transform x̂ is given by

x̂(λ) = R(λ,A)x0 (3.2)

for all λ ∈ C with sufficiently large real part. Here are two different ways to see
this:
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(1) We know the explicit solution formula x(t) = etAx0 for all t ∈ [0,∞). The
semigroup mapping T : t 7→ etA is exponentially bounded – it satisfies∥∥etA∥∥ ≤ e∥A∥t for all t ∈ [0,∞) – and a short computations shows that its
Laplace transform is, at all complex number λ with Reλ > ∥A∥, given by

T̂ (λ) = R(λ,A). Multiplication with x0 yields the claimed formula (3.2).
This approach is, strictly speaking, not really about the initial value

problem (3.1). Rather, it directly relates the semigroup generated by A to
the resolvent of A.

(2) The second approach uses a property of the Laplace transform, namely

that ̂̇x(λ) is equal to λx̂(λ)−x(0). Due to this formula, taking the Laplace
transform on both sides of the differential equation in (3.1) gives

λx̂(λ)− x0 = Ax̂(λ)

and therefore x̂(λ) = R(λ,A)x0 for all λ with sufficiently large real part.
This argument is mainly about the initial value problem (3.1) and did

not involve the semigroup directly. Note however that we cheated a bit: to
ensure that the argument actually works one first needs to show that the
solution x is exponentially bounded. One way to do this without explicitly
using the semigroup (etA)t≥0 is via Gronwall’s lemma.

3.3. Switching between semigroups, generators, and resolvents. As in the
previous Subsection 3.2 let us stay in the finite-dimensional setting and analyse
how the three main objects in semigroup theory – the semigroup, the generator,
and the resolvent – can be obtained from each other. In other words, we discuss
the edges in the following graph that connects those three objects (see [48, p. 48]
for the original picture):

(T (t))t≥0

semigroup

A
generator

(R(λ,A))λ∈ρ(A)

resolvent

While we formulate the connections in a finite-dimensional setting, they will guide
us the way in the infinite-dimensional situation that we discuss from Subsection 4.1
on.

The semigroup and the generator. Consider a matrix A ∈ Cn×n and the associated
semigroup (etA)t∈[0,∞) in Cn×n. How to obtain both objects from each other?

If the semigroup is given, we have already seen in Subsection 3.2 how to obtain
the generator A from it: it is the temporal of the semigroup at t = 0, i.e.,

A =
d

dt
etA|t=0.

Conversely, assume now that the generator A is given. Here are two ways to get
the semigroup operator etA from it at a given time t ∈ [0,∞):

(1) Via a power series: This is merely the definition of etA which we gave in
Subsection 3.2. We defined

etA :=

∞∑
k=0

(tA)k

k!
.
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(2) Via Euler’s formula: As for the scalar exponential function, one has the
formula

etA = lim
n→∞

(
id+

tA

n

)n

.

We will see in Section 4 that both those formulas for etA cause considerable
problems in the infinite-dimensional setting. This turns out to be different for
formulas that rely on the resolvent rather than on the operator A itself. We discuss
such formulas next.

The semigroup and the resolvent. For a matrix A ∈ Cn×n, how to obtain the
semigroup (etA)t≥0 and the resolvent R( · , A) from each other, without making
explicit use of the generator A itself?

If the semigroup is given, then we already know from Subsection 3.2 that the
resolvent can be obtained by computing the Laplace transform, i.e., one has

R(λ,A) =

∫ ∞

0

e−tλetA dt

whenever Reλ > ∥A∥. In fact, it is not difficult to show that the integral converges
(absolutely) and coincides with R(λ,A) even if Reλ is only assumed to be strictly
larger than the spectral bound s(A), which is defined as the largest among all real
parts of the eigenvalues of A. At points λ ∈ ρ(A) that are located further to the left,
the resolvent cannot be represented as a Laplace transform. However, it is worth
noting that the values of the resolvent on any right half plane (or, more generally,
on any non-empty open set) determine the resolvent everywhere else since R( · , A)
can be shown to be an analytic (complex analytic, holomoprhic) function.

Conversely, assume now that we have knowledge of R( · , A) and want to obtain
the semigroup at a time t ∈ [0,∞). We explain three ways to do this:

(1) Via Euler’s formula with negative exponents. We explained above how to
obtain etA from A via Euler’s formula. First observe that for the scalar-
valued case, i.e., the case A ∈ C, one can instead make use of the Euler

formula for e−tA, which gives the formula etA = (e−tA)−1 = limn→∞

(
1−

tA
n

)−n

. The same can be shown to be true for A ∈ Cn×n, i.e., one has

etA = lim
n→∞

(
id− tA

n

)−n

= lim
n→∞

(n
t
R

(n
t
,A

))n

.

This is actually a special case of the Post–Widder inversion formula for the
Laplace transform, which can for instance be found in [10, Theorem 1.7.7]
(for the scalar-valued case; by componentwise application, it is also true
for matrix-valued functions). To see that the resolvent does indeed occur
in the Post–Widder inversion formula, one needs to observe that the k-th

derivative of the resolvent at a point λ ∈ ρ(A) is given by dk

dλkR(λ,A) =

(−1)kR(λ,A)k+1 for every integer k ≥ 0.
(2) Via Cauchy’s integral formula: For a closed path γ in the complex plane

that encircles each spectral value of A exactly once, one has the following
matrix-valued equivalent of Cauchy’s integral formula:

etA =
1

2πi

∮
γ

etλ R(λ,A) dλ.

This is a special case of the holomorphic functional calculus for matrices.
(3) Via complex inversion of the Laplace transform: As R( · , A) is the Laplace

transform of the semigroup, one can use the complex inversion formula for
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the Laplace transform to get the semigroup from R( · , A). This gives the
formula

etA = lim
σ→∞

1

2πi

∫ ω+iσ

ω−iσ

etλ R(λ,A) dλ

for any real number ω > s(A). Note that this is a version of Cauchy’s
integral formula in the previous point: If one closes the line from ω − iσ
to ω + iσ by a half circle one gets, for large ω, a path that encircles the
spectrum of A. But the integral over the half circle is negligible if σ is large;
this can be shown by using the decay etλ → 0 as Reλ→ −∞ together with
the estimate ∥R(λ,A)∥ ≤ 1

|λ|−∥A∥ for |λ| > ∥A∥ that follows from the

Neumann series.

The generator and the resolvent. For a matrix A ∈ Cn×n and a complex number
λ in the resolvent set ρ(A) the resolvent R(λ,A) is obtained from A plainly by its
definition R(λ,A) = (λ id−A)−1. Conversely, let us mention three different ways
to retrieve A if the resolvent R( · , A) is given:

(1) Via reversing the definition: This is most straightforward – for λ ∈ ρ(A)
one has A = λ id−R(λ,A)−1.

(2) Via Cauchy’s integral formula: Just as one can obtain etA from the resolvent
by a Cauchy integral, the same also works for A itself: one has

A =
1

2πi

∮
γ

λR(λ,A) dλ,

where γ is any path in the complex plane that encircles each spectral value
of A exactly once.

(3) Via the behaviour at infinity : One has

A = lim
|λ|→∞

AλR(λ,A) = lim
|λ|→∞

λ
(
λR(λ,A)− id

)
.

Note that only the second part of the formula expresses A purely in terms
of the resolvent, without referring back to A itself.

To see that the formula holds, first observe that the Neumann series
gives R(λ,A) → 0 as |λ| → ∞. Hence, λR(λ,A) = id+AR(λ,A) → id as
|λ| → ∞. Multiplying with A gives the claim.

4. A taste of C0-semigroups

In this section we give a brief outline of some central concepts of C0-semigroup
theory. The main motivation for the theory is again to study linear autonomous
initial value problems, now with values in a Banach space. The relation between
the semigroup and the initial value problem is now a bit subtler than in the finite-
dimensional case, so we postpone its detailed discussion to Subsection 4.4. Before
that we take a close look at the three central objects that already occurred in the
finite-dimensional case: the semigroup, its generator, and the resolvent.

A major distinction compared to the finite-dimensional case is that the generator
A will, in general, be a unbounded operator that is only defined on a subspace of
a surrounding Banach space. This reflects the fact that in concrete PDE examples
on, say, Lp-spaces, the generator is typically a differential operator which is only
defined on a Sobolev space rather than on the entire Lp-space.

A second distinction is that, once one has made the step to unbounded operators,
it is far from obvious which such operators occur as the generator of a C0-semigroup.
This is a central question in C0-semigroup theory since it is closely connected to
the well-posedness of initial value problems (Section 4.4) and it is answered by a
couple of so-called generation theorems (Section 4.5).
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Finally, Section 4.6 roughly outlines how (generators of) C0-semigroups behave
under perturbation.

4.1. What is a C0-semigroup? Let A be a bounded operator on a Banach space
X. Since for each t ≥ 0,

∞∑
k=0

tk ∥A∥k

k!
= et∥A∥,

the series
∑∞

k=0
tkAk

k! is absolutely convergent in L(X). Therefore, the exponential

series etA :=
∑∞

k=0
tkAk

k! is well-defined in L(X). Just like in the finite-dimensional

case, the mapping t 7→ etA satisfies the properties

e0A = id and e(s+t)A = esAetA for all s, t ≥ 0.

Moreover, the mapping [0,∞) ∋ t 7→ etA ∈ L(X) is continuous; the proofs are
standard and can be found, for instance, in [21, Proposition 9.2]. Motivated by
this, we give the definition of a C0-semigroup.

Definition 4.1. A family of bounded operators (T (t))t≥0 on a Banach space X is
called a semigroup if it satisfies the functional equation

T (0) = id and T (t+ s) = T (t)T (s) for all t ≥ 0.

A semigroup (T (t))t≥0 is said to be strongly continuous (or C0-semigroup) if for
each x ∈ X, the orbit map t 7→ T (t)x is continuous from [0,∞) to X.

It turns out that the algebraic semigroup property and the analytical strong
continuity property mesh well. For instance, a semigroup of bounded operators
(T (t))t≥0 on a Banach space X is automatically a C0-semigroup if it is strongly
continuous at 0, i.e., limt↓0 T (t)x = x for each x ∈ X; see [48, Proposition I.5.3].
In fact, using the weak instead of the strong operator topology turns out to be
sufficient [48, Theorem I.5.8]:

Proposition 4.2. A semigroup of bounded operators (T (t))t≥0 on a Banach space
X is strongly continuous if and only if it is weakly continuous, i.e., for each x ∈ X
and x′ ∈ X ′, the map [0,∞) ∋ t 7→ ⟨x′ , T (t)x⟩ is continuous.

As noted in Example 2.6, the dual family (T (t)′)t≥0 corresponding to a C0-
semigroup (T (t))t≥0 on a Banach space X is again a semigroup on X ′, but need
not be strongly continuous, in general. However, one can readily check that strong
continuity of (T (t))t≥0 always implies weak∗-continuity of (T (t)′)t≥0 for a general
C0-semigroup (T (t))t≥0 on a Banach space X. Hence, if X is reflexive, then it
follows from Proposition 4.2 that the dual semigroup of a C0-semigroup is also a
C0-semigroup.

Let (T (t))t≥0 be a C0-semigroup on a Banach space X. Then for each x ∈ X,
the set

{T (t)x : t ∈ [0, 1]}
is a continuous image of a compact set, hence bounded. By the uniform bounded-
ness principle, it follows that (T (t))t≥0 is locally bounded, i.e., bounded on compact
intervals. This observation yields a quite useful property of C0-semigroups that is
they are exponentially bounded [48, Proposition I.5.5]:

Proposition 4.3. Let (T (t))t≥0 be a C0-semigroup on a Banach space X. Then
there exists ω ∈ R and M ≥ 1 such that ∥T (t)∥ ≤Meωt for all t ≥ 0.

The growth bound of a C0-semigroup (T (t))t≥0 is defined as

ω0(T ) := inf{ω ∈ R | ∃ M ≥ 1 ∀ t ≥ 0 ∥T (t)∥ ≤Meωt} ∈ [−∞,∞).

If there exists a number M ≥ 1 such that ∥T (t)∥ ≤ M for all t ≥ 0, then the
semigroup is called bounded.
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4.2. The generator of a C0-semigroup. If A is a matrix, we have seen that the
matrix exponential t 7→ etA is differentiable with derivative d

dte
tA = AetA. More

generally – due to uniform convergence – the same property holds if A is a bounded
operator on a Banach space X. Consequently, there is a one-to-one correspondence
between the semigroup (etA)t≥0 and the initial value problem (3.1). Therefore, to
relate a general C0-semigroup (T (t))t≥0 to the solution of an initial value problem,
one gets interested in the differentiability of the orbit map ξx := t 7→ T (t)x for fixed
x ∈ X. It turns out [21, Lemma 9.5] that ξx is differentiable on [0,∞) if and only
if it is right differentiable at 0, and in this case

ξ̇x(t) = T (t)ξ̇x(0), t ≥ 0.

Limiting ourselves to the subspace where the semigroup is right differentiable, yields
the following notion:

Definition 4.4. The generator of a C0-semigroup (T (t))t≥0 on a Banach space X
is the linear operator defined as

dom(A) :=

{
x ∈ X | lim

h↓0

T (h)x− x

h
exists

}
Ax := ξ̇x(0) = lim

h↓0

T (h)x− x

h
.

The generator of a C0-semigroup is a closed and densely defined operator and
determines the semigroup uniquely [48, Theorem II.1.4]. According to the closed
graph theorem, dom(A) = X if and only if A is bounded and in this case, the
semigroup is given by T (t) = etA. For this reason, it is common in some parts of
the literature to use the notation (etA)t≥0 for a general C0-semigroup generated by
A.

Let A be the generator of a C0-semigroup (T (t))t≥0 on a Banach space X. Since
existence of a strong limit implies existence of a weak limit, the operator

Awx := w - lim
h↓0

T (h)x− x

h

extends A and is called the weak-generator of A; here w - lim denotes the limit in
the weak topology of X. Similarly as strong continuity of a semigroup is equivalent
to weak continuity (Proposition 4.2), one also has the following; see also [109,
Theorem 2.1.3] and [111, Exercise 1.2.4].

Proposition 4.5. The strong and weak generators of a C0-semigroup on a Banach
space coincide.

The generator of a C0-semigroup has quite useful properties. In particular, we
have a generalization of the fundamental theorem of calculus:

Proposition 4.6. Let A generate a C0-semigroup (T (t))t≥0 on a Banach space X.
The following properties hold:

(a) The semigroup leaves dom(A) invariant, i.e., T (t) dom(A) ⊆ dom(A) for
all t ≥ 0. Furthermore,

Ṫ (t)x = T (t)Ax = AT (t)x (x ∈ dom(A)).

(b) For each t ≥ 0 and x ∈ X, we have∫ t

0

T (s)x ds ∈ dom(A) and A

∫ t

0

T (s)x ds = T (t)x− x.

In addition, if x ∈ dom(A), then∫ t

0

T (s)Ax ds = T (t)x− x.
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for all t ≥ 0.

4.3. The resolvent of a C0-semigroup. Since the generator of a C0-semigroup
is always closed, it is natural to study its spectral properties. Let us recall that for
a closed operator A on a Banach space X, its resolvent set is defined as the set

ρ(A) := {λ ∈ C : λ−A is bijective from dom(A) to X}
and the complement set σ(A) := C \ ρ(A) is called the spectrum of A. By the
closed graph theorem, the operator R(λ,A) := (λ−A)−1 ∈ L(X,dom(A)) for each
λ ∈ ρ(A) is called the resolvent of A at λ. Another object of interest is the spectral
bound defined as

s(A) := sup{Reλ ∈ σ(A)} ∈ [−∞,∞].

The resolvent of A is a pseudo-resolvent, i.e., it satisfies the resolvent identity

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A)

for all λ, µ ∈ ρ(A). The analytic properties of the resolvent are summarized in the
following proposition.

Proposition 4.7. The following properties hold for a closed operator A on a Ba-
nach space X.

(a) The resolvent set ρ(A) is open in C. More precisely, if λ ∈ ρ(A) and µ ∈ C
satisfy |µ− λ| < ∥R(λ,A)∥−1

, then µ is also in ρ(A) and the resolvent is
given by the Taylor series representation

R(λ,A) =

∞∑
k=0

(µ− λ)nR(λ,A)k+1,

which converges absolutely in L(X).
(b) The resolvent map R( · , A) is complex differentiable on ρ(A) with

dn

dλn
R(λ,A) = (−1)nn!R(λ,A)n+1.

for all n ∈ N0.

For the spectral theory of closed operators on a Banach space, we refer to [124,
Chapter VIII] and [48, Section IV.1]. While the resolvent set of a closed operator
may be empty, the situation is vastly better for semigroup generators. For them,
not only is the resolvent set non-empty but because ω0(T ) < ∞, we even have
Laplace transform representation of the resolvent:

Proposition 4.8. Let (T (t))t≥0 be a C0-semigroup on a Banach space X with
generator A. Then

{λ ∈ C : Reλ > ω0(T )} ⊆ ρ(A)

and for each x ∈ X and λ ∈ C with Reλ > ω0(T ), we have

R(λ,A) =

∫ ∞

0

e−λsT (s)x ds;

where the integral converges both as an improper Riemann integral and as a Bochner
integral. In particular, s(A) ≤ ω0(T ).

Furthermore, if M ≥ 1 and ω ∈ R are such that ∥T (t)∥ ≤ Meωt for all t ≥ 0,
then

∥∥R(λ,A)k
∥∥ ≤ M

(Reλ−ω)k
for all λ ∈ C with Reλ > ω.

While the spectral bound is always dominated by the growth bound and equal-
ity always holds in finite dimension [21, Corollary 4.8], the equality may fail in
infinite-dimensions [10, Example 5.1.11]. The cases where equality holds are rather
important as in these cases one can assert from s(A) < 0 that the semigroup opera-
tors converge to 0 in the operator norm as t→ ∞. We refer to [13, Section 6.1] and
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the references therein for further insight into spectral bound equals growth bound
condition.

4.4. Connection to initial value problems. We are finally ready to discuss the
relationship between C0-semigroups and the solutions of abstract Cauchy problem
of the form {

ẋ(t) = Ax(t) for all t ≥ 0,

x(0) = x0
(4.1)

for an operator A on a Banach space X. We first need to define what we mean by
a solution.

Definition 4.9. Let A be an operator on a Banach space X.

(a) A classical solution of the abstract Cauchy problem (4.1) is a continuously
differentiable function x : [0,∞) → X which satisfies the following proper-
ties: x(0) = x0 and for all t ≥ 0 one has x(t) ∈ dom(A) and ẋ(t) = Ax(t).

(b) A mild solution of the abstract Cauchy problem (4.1) is a continuous func-
tion x : [0,∞) → X which satisfies the following properties: for each t ≥ 0

one has
∫ t

0
x(s) ds ∈ dom(A) and

A

∫ t

0

x(s) ds = x(t)− x0.

Using the properties of C0-semigroups stated in Proposition 4.7, we immediately
see that C0-semigroups yields both classical (for x ∈ dom(A)) and mild (for x ∈
X) solutions of (4.1). Actually, we even have uniqueness [48, Propositions II.6.2
and II.6.4].

Proposition 4.10. Let A generate a C0-semigroup (T (t))t≥0 on a Banach space
X. For each x0 ∈ X, the orbit map

x( · , x0) := t 7→ T (t)x0

is the unique mild solution of (4.1). Moreover, if x0 ∈ dom(A), then x( · , x0) is
the unique classical solution of (4.1).

For initial value problems, the existence, uniqueness, and continuous dependence
on initial data is what is referred to as well-posedness. There are various definitions
for the notion of well-posedness of (4.1), see the discussion of [48, Page 151–152].
We use the definition given in [48, Definition II.6.8].

Definition 4.11. For a closed operator A on a Banach space X, the abstract
Cauchy problem (4.1) is said to be well-posed if the following conditions hold:

(a) The operator A is densely defined.
(b) For each x0 ∈ dom(A), there exists a unique solution x( · , x0) of (4.1).
(c) For every null sequence (xn) in dom(A), we have x(t, xn) → 0 as n → ∞

uniformly on compact subsets of [0,∞).

The choice of the above definition is justified by the following result [48, Theo-
rem II.6.7] which relates C0-semigroups to well-posed abstract Cauchy problems.

Theorem 4.12. For a closed operator A on a Banach space X, the following are
equivalent.

(i) The operator A generates a C0-semigroup.
(ii) The abstract Cauchy problem (4.1) is well-posed.
(iii) The condition (b) in Definition 4.11 holds and ρ(A) ̸= ∅.
(iv) The condition (b) in Definition 4.11 holds and there exists a sequence λn ↑

∞ such that (λn −A) is surjective for all n ∈ N.
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4.5. Generation theorems. A key problem of semigroup theory is to characterize
linear operators that generates a semigroup.

Characterization in terms of the resolvent. In general, closed densely defined oper-
ator whose spectrum lies in a left-half plane need not generate a C0-semigroup [48,
Example II.3.2]. However, an additional growth estimate of the resolvent powers on
a right half plane (Proposition 4.8) does turn to be sufficient. This is the celebrated
Hille–Yosida theorem below that was proved independently E. Hille and K. Yosida.

Theorem 4.13 (Hille-Yosida theorem). Let A be linear operator on a Banach space
X and let M ≥ 1 and ω ∈ R. The following are equivalent.

(i) The operator A is the generator of C0-semigroup (T (t))t≥0 that satisfies
∥T (t)∥ ≤Meωt for all t ≥ 0.

(ii) The operator A is closed, densely defined, (ω,∞) ⊆ ρ(A), and the estimates∥∥(λ− ω)kR(λ,A)k
∥∥ ≤M hold for all λ > ω and k ∈ N.

In particular, the generators of contraction semigroups can be characterized as
follows:

Corollary 4.14. The following are equivalent for a linear operator A on a Banach
space X.

(i) The operator A generates a contraction C0-semigroup (T (t))t≥0 on X.
(ii) The operator A is closed, densely defined, and (0,∞) ⊆ ρ(A) and the esti-

mates ∥λR(λ,A)∥ ≤ 1 hold for all λ > 0.

The proof of the Hille-Yosida theorem is quite involved and the details become
much less technical for the contraction case. In fact, the Theorem 4.13 can even
be deduced from Corollary 4.14 and that is how it is usually done in the literature,
for instance in [48, Section II.3]. We find it instructive to outline the proof of
Corollary 4.14: The implication “(i) ⇒ (ii)” is known from Proposition 4.8. For the
implication, “(ii) ⇒ (i)”, one defines the Yosida approximants

An := nAR(n,A) n ∈ N,
which are bounded operators on X. Consequently, they generate C0-semigroups
(etAn)t≥0. In fact, the resolvent bound in (ii) even implies that the semigroups
(etAn)t≥0 are contractive. It is then shown that for each t ≥ 0, the sequence (etAn)
converges strongly as on dom(A), hence on X. The strong limit

T (t) := lim
n→∞

etAn t ≥ 0

is then shown to be a C0-semigroup and finally that its generator is indeed A.

Characterization in terms of the generator. Until now, the characterizations of
semigroup generators that we have seen require knowledge of the resolvent. How-
ever, Lumer and Phillips obtained conditions for closed operators to generate a
contraction semigroup without any information on the spectrum. Recall that an
operator A on a Banach space X is said to be dissipative if

∥(λ−A)x∥ ≥ λ ∥x∥ for all λ > 0 and x ∈ dom(A).

Theorem 4.15 (Lumer-Phillips theorem). The following are equivalent for a densely
defined dissipative operator A on a Banach space X.

(i) The closure of A generates a contraction semigroup on X.
(ii) The image Rg(λ−A) is dense in X for some (hence, all) λ > 0.

For a densely defined operator A on a Banach space X, it turns out that if
both A and its Banach space dual A′ are dissipative, then Rg(1 − A) is dense
in X [48, Corollary II.3.17] and hence by Lumer-Phillips theorem, Ā generates
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a contraction semigroup on X. On Hilbert spaces, the situation is much nicer.
Indeed, if A is a densely defined operator on a Hilbert space H and A is skew-
adjoint, i.e., A∗ = −A, then it can be shown that A and −A are both dissipative
and closed [48, Proof of Theorem II.3.24]. Therefore, both A and −A generate
C0-semigroups on H. In other words, A generates a group (T (t))t∈R on H, i.e.,
the properties in Definition 4.1 hold when [0,∞] is replaced with R. As A is skew-
adjoint, the group is unitary, i.e., T (t)−1 = T (t)∗ for all t ≥ 0. For general operators
on Hilbert spaces, we have the following consequence of Lumer-Phillips theorem,
see for instance [122, Lemma 3.17 and Theorem 3.16].

Corollary 4.16. An operator A on a Hilbert space H generates a contraction C0-
semigroup on X if and only if −A is m-accretive, i.e., Re ⟨Ax , x⟩ ≤ 0 for all
x ∈ dom(A) and Rg(λ−A) = H for some λ > 0.

Generation by sectorial operators. One disadvantage of the Hille-Yosida theorem is
having to check to check boundedness estimates for all powers of the resolvent. This
can be avoided if a boundedness estimate holds for the resolvent in some sector.

Definition 4.17. An operator A on a Banach space X is called sectorial if there
exists ω ∈ R, θ ∈ (π/2, π) and M > 0 such that

Sθ,ω := {λ ∈ C |λ ̸= ω, |arg(λ− ω)| < θ} ⊆ ρ(A)

and

∥(λ− ω)R(λ,A)∥ ≤M (λ ∈ Sθ,ω).

Sectorial operators are always closed. Using functional calculus, it can be shown
that sectorial operators always generate a semigroup. However, such semigroups
need not be strongly continuous (see Section 5.2), as the operator A need not
be densely defined. Imposing this missing property yields a generation result for
sectorial operators [48, Theorem II.4.6].

Theorem 4.18. The following are equivalent for an A on a Banach space X.

(i) The operator A generates a bounded C0-semigroup (T (t))t≥0 on X such that
Rg T (t) ⊆ dom(A) for all t > 0 and the family (tAT (t))t∈[0,1] is uniformly
bounded.

(ii) The operator A is densely defined and sectorial.

In fact, the C0-semigroup (T (t))t≥0 generated by densely defined sectorial op-
erator has properties much stronger than the one stated in condition (i) above.
Indeed, it is shown in [48, Theorem II.4.6] that (T (t))t≥0 even extends to a family
of bounded operators (T (λ))λ∈S0,θ−π/2

such that

T (λ+ µ) = T (λ)T (µ) for all λ, µ ∈ S0,θ−π/2

and the map λ 7→ T (λ) is analytic in the sector S0,θ−π/2. Furthermore, for each
θ′ ∈ (π/2, θ) and x ∈ X, we have

lim
S0,θ′−π/2∋λ→0

T (λ)x = x

The semigroups (T (λ))λ∈S0,θ−π/2
above are called analytic and occur frequently

in applications. This is specially because on Hilbert spaces, self-adjoint operators
that are bounded above are sectorial and densely defined [48, Corollary II.4.7] and
hence generate an analytic C0-semigroup by Theorem 4.18. Generators of analytic
semigroups exhibit remarkable spectral properties – for example, s(A) = ω0(T ) –
that makes it easier to analyze the asymptotic behaviour of analytic semigroup.
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Generation by form methods. In the realm of various evolution equations, the en-
ergy is often quantified through an L2-norm, rendering Hilbert spaces a fitting
framework for their formulation and analysis. Abstractly, the Riesz representation
theorem, or more generally, the Lax-Milgram lemma, offers insights into the proper-
ties of existence and uniqueness, particularly suited for establishing weak solutions
of elliptic partial differential equations.

Definition 4.19. Let V be a vector space. A form on V is a scalar-valued mapping
on V × V that is sesquilinear, i.e., linear in the first and anti-linear in the second
argument.

Moreover, we say that a is bounded if there exists M ≥ 0 such that

|a(u, v)| ≤M ∥u∥ ∥v∥ for all u, v ∈ V,

and coercive if there exists α > 0 such that

Re a(u) ≥ α ∥u∥2 for all u ∈ V.

Let a be a bounded form on a Hilbert space V . Then a(u, · ) is a bounded linear
functional on V for each u ∈ V , so by the Riesz representation theorem, there exists
a bounded linear operator A on V such that

⟨Au , v⟩ = a(u, v)

for all u, v ∈ V . This operator is called the Lax-Milgram operator (associated to a).

Theorem 4.20 (Lax-Milgram lemma). Let a be a bounded and α-coercive form on
a Hilbert space V and let A denote the associated Lax-Milgram operator. Then A
is an isomorphism and

∥∥A−1
∥∥ ≤ α−1.

Definition 4.21. Let V and H be Hilbert spaces and let j : V → H be a dense
embedding. Let A denote the Lax-Milgram operator associated to a bounded co-
ercive form on V and define k : H → V ′ as y 7→ ⟨y , j( · )⟩. The operator A on H
defined by

A−1 := jA−1k

is called the operator associated with (a, j).

Equivalently, one may define the operator A above as

A := {(x, y) ∈ H ×H | ∃ u ∈ V j(u) = x and a(u, · ) = ⟨y , j( · )⟩};
see [122, Proposition 5.7]. In the situation of Definition 4.21, it can be shown using
Lax-Milgram lemma that A is m-accretive [122, Theorem 5.6], so by Corollary 4.16
we have the following:

Theorem 4.22. Let V and H be Hilbert spaces, let j : V → H be a dense embed-
ding, and let a be a bounded coercive form on V . If A is the operator associated to
(a, j), then −A generates a contraction semigroup on H.

Actually, it can even be shown [122, Exercise 5.2] that the semigroup (T (t))t≥0

obtained in Theorem 4.22 is not only contractive but there even exists ω > 0 such
that ∥T (t)∥ ≤ e−ωt for all t ≥ 0.

4.6. Perturbation theorems. A fundamental problem in the semigroup theory is
to check whether perturbing the generator of a semigroup again yields a semigroup
generator. To be more precise, if A generates a C0-semigroup on a Banach space X
and B is an operator on X, does A+ B also generate a C0-semigroup on X? The
problem is delicate because even if B is closed, it is possible that A+B is not (take
B = −A for unbounded A). Moreover, it is also possible that A+B is not densely
defined. For bounded perturbations, the situation is rather nice. In this case, we do
not only obtain that the perturbation generates a C0-semigroup but we also have
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a representation formulae for the perturbed semigroup, see [48, Section III.1] for a
proofs.

Proposition 4.23. If A generates a C0-semigroup (T (t))t≥0 on a Banach space
X and B ∈ L(X), then A + B also generates a C0-semigroup (S(t))t≥0 on X.
Moreover, the following hold.

(a) The variation of parameters formula

S(t)x = T (t)x+

∫ t

0

T (t− s)BS(s)x

= T (t)x+

∫ t

0

S(s)BT (t− s)x

holds for all t ≥ 0 and x ∈ X.
(b) The perturbed semigroup is given by the Dyson-Phillips series

S(t) =
∑
n≥0

Sn(t)

where

S0(t) = T (t) and Sn+1(t) =

∫ t

0

T (t− s)BSn(s) ds (n ≥ 0).

(c) If (T (t))t≥0 is analytic, so is (S(t))t≥0.

As pointed out above, when leaving the realm of bounded perturbations, it
might not make sense to even ask where the perturbed operator still generates a
C0-semigroup. In particular, one might come across the following situations:

(1) The operator A+B is not closed. This situation occurs for instance if A is
unbounded and B = −A.

(2) The domain D(A+B) = D(A) ∩D(B) is too small to be dense in X. For
instance, if D(A) ∩D(B) = {0}.

(3) The resolvent set ρ(A+B) is empty.

In order to tackle the second situation, one considers perturbations that are A-
bounded:

Definition 4.24. Let A be an operator on a Banach space X. An operator B on
X is said to be A-bounded if dom(A) ⊆ dom(B) and there exists a, b ≥ 0 such that

∥Bx∥ ≤ a ∥Ax∥+ b ∥x∥ (4.2)

for all x ∈ dom(A). In this case,

a0 := inf{a ≥ 0 | ∃ b ≥ 0 such that (4.2) holds}
is called the A-bound of A.

To ensure that A + B is a closed operator, it suffices to assume that B is A-
bounded and a0 < 1 [48, Lemma III.2.4]. Now, we have the following [48, Theo-
rem 2.7]:

Proposition 4.25. If A generates a contraction C0-semigroup on a Banach space
X and B is a dissipative and A-bounded operator on X with a0 < 1, then (A +
B, dom(A)) also generates a contraction C0-semigroup on X.

In the situation of Proposition 4.25, if a0 ̸< 1 but (4.2) holds with a = 1,
then the assertion remains true if, in addition, B′ is densely defined on X ′, see
[48, Corollary III.2.8]. Similar results can be found in [48, Section III.2]. These
results are based on a series representation of the resolvent that prohibits one to
estimate powers of the resolvent to apply Hille-Yosida theorem for non-contractive
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C0-semigroups. Instead approaching the problem based on the two variation of
parameters formulae in Proposition 4.23(a) turns out to be more fruitful. In order
to state the results, we first need to introduce the concept of interpolation and
extrapolation semigroups.

Let (T (t))t≥0 be a C0-semigroup on a Banach space X with generator A and fix
λ ∈ ρ(A). The corresponding interpolation space

X1 := (dom(A), ∥ · ∥1), ∥ · ∥1 := ∥A · ∥ ,

and extrapolation space – defined as the completion

X−1 := (X, ∥ · ∥−1)
∼, ∥ · ∥−1 := ∥R(λ,A) · ∥ ,

are both Banach spaces. For different choices of λ, the norms on X−1 are equiva-
lent. Further, (T (t))t≥0 extends uniquely to a C0-semigroup on X−1, denoted by
(T−1(t))t≥0. The generator A−1 of (T−1(t))t≥0 has domain dom(A−1) = X and
is the unique extension of A to a bounded operator from X to X−1. Using X1,
one can construct the interpolation space X2 continue the process and similarly for
the extrapolation spaces. This yields the so-called Sobolev tower (Xn)n∈Z and a
C0-semigroup on each of these spaces that has the same spectrum, spectral bound,
and growth bound. A detailed description of interpolation and extrapolation spaces
is given in [48, Section II.t].

We are now ready to state a Desch-Schappacher perturbation result given in [48,
Corollary III.3.3].

Proposition 4.26. Let A be the generator of a C0-semigroup (T (t))t≥0 on a
Banach space X and let B ∈ L(X,X−1). Suppose that there exists τ > 0 and
K ∈ (0, 1) such that

(a)
∫ τ

0
T (τ − s)Bu(s) ∈ X and

(b)
∥∥∫ τ

0
T (τ − s)Bu(s)

∥∥
X

≤ K ∥u∥∞.

for all u ∈ C([0, τ ], X), then the part of A−1 + B in X generates a C0-semigroup
given by the Dyson-Phillips series.

The above result is closely related to infinite-dimensional systems theory. Indeed,
a control system can frequently be modelled as

ẋ(t) = Ax(t) +Bu(t), t ≥ 0

x(0) = x0;

where A generates a C0-semigroup on a Banach space X and B ∈ L(X,X−1). Then
B satisfies the assumptions of Theorem 4.27 if it is zero-class C-admissible, i.e., for
each τ > 0, we have

∫ τ

0
T (τ − s)Bu(s) ∈ X and

lim
τ↓0

∥∥∥∥∫ τ

0

T (τ − s)Bu(s)

∥∥∥∥
X

= 0

for all u ∈ C([0, τ ], X) In particular, zero-class C-admissible control operators are
Desch-Schappacher perturbations. Other Desch-Schappacher perturbation results
can be found in [48, Section III.3.a]. For the case of positive systems, these were
recently treated in [20] and [14, Section 5]. The dual of control systems is an
observation system of the form

ẋ(t) = Ax(t), t ≥ 0

y(t) = Cx(t), t ≥ 0

x(0) = x0;
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where A generates a C0-semigroup on a Banach space X and C ∈ L(X1, X). The
observation operator C is called zero-class L1-admissible if

lim
τ↓0

∫ τ

0

∥CT (s)x∥X ds = 0

for all x ∈ X1. These operators yield the so-called Miyadera-Voigt perturbations.
More generally, we have

Proposition 4.27. Let A be the generator of a C0-semigroup (T (t))t≥0 on a Ba-
nach space X and let C ∈ L(X1, X). Suppose that there exists τ > 0 and K ∈ (0, 1)
such that ∫ τ

0

∥CT (s)x∥X ds ≤ K ∥x∥

for all x ∈ X1, then A+ C generates a C0-semigroup (S(t))t≥0. Moreover,

S(t)x = T (t)x+

∫ t

0

T (t− s)BS(s)x

and ∫ τ

0

∥CD(s)x∥X ds ≤ K

1−K
∥x∥

for all x ∈ X1 and t ≥ 0.

For results regarding Miyadera-Voigt perturbations, we refer for instance to [48,
Section III.3.c]. See also [110] and [68]. They play an important role in the study
of Schrödinger and transport operators [118, 119]. Applications to systems theory
can be found, for instance, in [69], [120, Section 3.2.1], and [14, Section 5]. Instead
of additive, one can also consider multiplicative perturbations. We refer to [48,
Section III.3.d] for an overview and [48, Notes to Chapter III] for further references.

5. Beyond the C0-property

We now come to the heart of this article: semigroups which are not strongly
continuous, but might have some other kind of time regularity property. The de-
velopment of such theories typically follows two guiding principles:

(1) The theory is designed to solve a certain class of initial value problems.
(2) The theory gives meaning to appropriate version of the three important ob-

jects semigroup, generator, and resolvent and studies the relations between
them. This encompasses, in particular, one or several generation theorems.

Any of this is only possible of the semigroup satisfies at least some kind of time
regularity. If it does not, it will not be possible to take time derivatives of the
orbits, to speak of a generator, or to use Laplace integrals. Hence, the different
semigroup theories that we discuss in this section all require a non-trivial kind of
time regularity and their distinctive feature is precisely what kind of regularity one
assumes.

Yet, the rich variety of regularity notions (and hence of different semigroup
theories) makes it most convenient to approach the subject from a very axiomatic
point of view that defines a semigroup in a purely algebraic way and adds time
regularity assumptions as and when needed.

5.1. What is a semigroup? Let S = (S,+) be a commutative monoid and let ≤
be a pre-order on S given by

s ≤ t :⇔ ∃ r ∈ S : t = s+ r
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for each s, t ∈ S. Since, s, t ∈ s + t for all s, t ∈ S, so S is directed with respect
to the pre-order ≤. A mapping T : S → L(X) is called a representation of S on a
Banach space X if it satisfies

T (0) = id and T (t+ s) = T (t)T (s) for all t, s ∈ S.

With this notation, we call T an operator semigroup (over S on X) and typically
use the notation T = (T (s))s∈S for it. The most common operator semigroup
occurring in the literature are (T (s))s∈[0,∞) or the discrete semigroup (Tn)n∈N for
a bounded operator T ∈ L(E). We limit ourselves to the former in this exposition
and denote it by T , when there is no fear of confusion.

Definition 5.1. A Banach space valued function f : [0,∞) → X is said to be
exponentially bounded if there exists M,ω ∈ R such that

∥f(t)∥ ≤Meωt

for all t ≥ 0.

We know from Proposition 4.3 that a C0-semigroup on a Banach space X is
always exponentially bounded. When studying other operator semigroups, however,
the assumption of exponential boundedness needs to be a priori assumed in order
to obtain meaningful results.

5.2. Regularity for t > 0. The celebrated monograph [72] established the theory
of operator semigroups that are merely strongly (or uniformly) continuous on (0,∞)
treating C0-semigroups as a special case. This theory was used to also study the
n-parameter semigroup of linear operators [72, Section 10.10]. The choice of strong
continuity was justified by the fact that it is already implied if one has strong
mesurability on (0,∞) [72, Theorem 10.2.3]. In fact, strong mesurability on (0,∞)
even implies boundedness near 0 [72, Lemma 10.2.1]. While most earlier results
on such semigroups assume exponential boundedness, Baskakov in [19] developed
a rather general theory for generators.

Let (T (t))t>0 be a strongly continuous operator semigroup on a Banach space
X. The type of the semigroup T defined as

ω0(T ) := lim
t→∞

ln ∥T (t)∥
t

is always finite. The linear operator

dom(A0) :=

{
x ∈ X : lim

t↓0

T (t)x− x

t
exists

}
, A0x := lim

t↓0

T (t)x− x

t

is called the infinitesimal operator associated to the semigroup T . The infinitesimal
operator need not be closed [19, Example 1] and in fact one even has ρ(A0) = ∅ if
Rg T ̸= X by [19, Corollary 3]. In particular, in the latter case, one cannot speak
of the Laplace transform representation. For this reason, various other notions of
generators were introduced in [19, Section 3]. The following one is particularly
useful:

Definition 5.2. Let (T (t))t>0 be a strongly continuous operator semigroup on a
Banach space X. A linear relation A on X is said to be a primitive generator of T
if it fulfills the following conditions:

(a) {(x,A0x) |x ∈ dom(A0) and limt↓0 T (t)A0x = A0x} ⊆ A,

(b) dom(A) ⊆ Rg T ,

T (t)x− T (s)x =

∫ t

s

T (τ)y dτ (s ≤ t)

for all (x, y) ∈ A,
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(c) A permutes with T , i.e., (T (t)x, T (t)y) ∈ A for all t > 0 and all (x, y) ∈ A,
and

(d) there exists ωA ≥ ω0(T ) such that

{λ ∈ C : Reλ > ωA} ⊆ ρ(A).

Primitive generators were also called base generators in [18]. A primitive gen-
erator is single-valued, i.e., a linear operator, if and only if kerT = {0}; see [19,
Corollary 2]. Sufficient conditions for existence of primitive generators are given
in [19, Theorem 6 and Corollary 6]. For primitive generators the Laplace transform
representation of the resolvent always holds in a certain subset [19, Theorem 4]:

Theorem 5.3. Let A be a primitive generator of a strongly continuous operator
semigroup (T (t))t>0 on a Banach space X.

Let λ ∈ C be such that Reλ > ωA and let x ∈ X. If the conditions∫ 1

0

∥T (s)x∥ ds <∞ and sup
τ∈(0,1]

τ−1

∥∥∥∥∫ τ

0

T (s+ · )x
∥∥∥∥ ds ∈ L1[0, 1]

and∫ 1

0

∥T (s)R(λ,A)x∥ ds <∞ and lim
τ↓0

τ−1

∫ τ

0

T (s)R(λ,A)x ds = R(λ,A)x

are satisfied, then

R(λ,A)x = −
∫ ∞

0

e−λsT (s)x ds.

The situation improves if the semigroup is assumed to be exponentially bounded.
First of all, let us point out boundedness near 0 implies exponential boundedness.

Proposition 5.4. Let (T (t))t>0 be a strongly continuous operator semigroup on a
Banach space X. If there exists M > 0 such that supt≤1 ∥T (t)∥ ≤ M , then T is
exponentially bounded.

Proof. For each t ≥ 0, there exists n ∈ N and s ∈ (0, 1] such that t = s+n. By the
semigroup law,

∥T (t)∥ = ∥T (s)T (1)n∥ ≤Mn+1 =Men logM ≤Meωt

for ω = logM . Hence, T is exponentially bounded. □

The most general semigroups for which ergodic theory was studied in [72, Sec-
tion 18.4] are called semigroups of class (E), see [72, Definition 18.4.1] for the defi-
nition. Semigroups of class (E) always have a primitive generator and one has the
corresponding Laplace transform representation for the resolvent [19, Theorem 2].
The most well-studied class (E) semigroups are exponentially bounded semigroups.
They actually belong to the larger class (0,C1) of semigroups, see [19, Section 1] for
which we have the following due to [72, Corollary to Theorem 11.5.1 and Corollary 1
to Theorem 11.5.3] and [67, Corollary A.8.3]:

Theorem 5.5. Let (T (t))t>0 be a strongly continuous operator semigroup on a
Banach space X. If T is exponentially bounded and

lim
t↓0

1

t

∫ t

0

T (τ)x dτ = x

for all x ∈ X, then its infinitesimal operator A0 is closed and

R(λ,A0)x =

∫ ∞

0

e−λsT (x)x ds
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for all λ ∈ C with Reλ > ω0(T ) and all x ∈ X. Moreover, its degeneration space

NT := {x ∈ X : T (t)x = 0 for all t ≥ 0} = {0},

and the space of strong continuity of T is dom(A0).

The constant zero semigroup is a trivial example of a semigroup that shows that
the condition

lim
t↓0

1

t

∫ t

0

T (τ)x dτ = x (x ∈ X)

cannot be dropped in Theorem 5.5.
The semigroups occurring in parabolic problems can be analytically extended to

a sector in the complex plane. Analytic semigroups can simply be constructed via
the natural functional calculus and in turn, they exhibit particular strong proper-
ties. Extensive attention has been given to the study of analytic semigroups and we
refer, in particular, to the self-contained monograph [96], the treatment in [67, Sec-
tion 3.4], and [72, Chapter XVII]. We also refer to [11, 12, 91] for applications to
second-order parabolic equations with non-local boundary conditions.

Let A be a sectorial operator on a Banach space X, i.e., there exists ω ∈ R, θ ∈
(π/2, π) and M > 0 such that

Sθ,ω := {λ ∈ C |λ ̸= ω, |arg(λ− ω)| < θ} ⊆ ρ(A)

and

∥(λ− ω)R(λ,A)∥ ≤M (λ ∈ Sθ,ω).

Then A is closed and there is a family {T (λ) : λ ∈ S0,θ−π/2} of bounded linear
operators such that

T (λ+ µ) = T (λ)T (µ) for all λ, µ ∈ S0,θ−π/2.

Moreover, the function λ 7→ T (λ) is analytic on S0,θ−π/2 and the representation

R(λ,A) =

∫ ∞

0

e−λsT (s) ds

holds for all λ ∈ C with Reλ > ω. In particular, (T (t))t>0 is a strongly continuous
bounded operator semigroup on X. Conversely, if (T (t))t>0 is an exponentially
bounded operator semigroup on X such that t 7→ T (t) is differentiable on (0,∞),
the family (tT ′(t))t>0 is also exponentially bounded, and T (t0) is injective, then
by [96, Propostion 2.1.9] there exists a sectorial operator on X whose resolvent
is given by the Laplace transform representation of the semigroup (on a suitable
half-plane).

5.3. Bi-continuous semigroups. In the context of one-parameter semigroups on
Banach spaces we saw elementary constructions in Subsection 2.4 that also result
in a semigroup, but possibly without the property of strong continuity. More gen-
erally, if a one-parameter semigroup is not strongly continuous with respect to the
norm topology of a Banach space X, it may still have this property for some coarser
locally convex topology τ on X. This is the case, e.g., for adjoint semigroups, for
implemented semigroups or semigroups arising from product type constructions.
Beside these, there are also natural examples that come from particular applica-
tions, such as transition semigroups of Markov processes or Koopman semigroups
of dynamical systems (see Subsection 2.2).

In the literature there are many approaches that rectify the situation in very
particular cases, and these are usually indeed attached to one specific class of prob-
lems. One of the right ideas, which is general enough to be applicable in many
different situations, was discovered by Franziska Kühnemund and presented in her
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PhD thesis [89], see also [90]. We describe here the setting and some basic results,
then we give an overview of what is known for this class of semigroups.

The standing assumption in this subsection is the following:

Assumption 5.6. We consider a triple (X, ∥ · ∥, τ), where
(a) X is a Banach space with norm ∥ · ∥,
(b) τ is a Hausdorff locally convex topology, coarser than the norm-topology

on X.
(c) τ is sequentially complete on norm-bounded sets, i.e., every ∥ · ∥-bounded

τ -Cauchy sequence is τ -convergent.
(d) The continuous dual (X, τ)′ space of (X, τ) is norming for X, i.e.,

∥x∥ = sup
φ∈(X,τ)′

∥φ∥≤1

|φ(x)| for all x ∈ X.

Note here that if the continuous dual (X, τ)′ of (X, τ) coincides with the norm
dual X ′ of X, then τ is finer than the weak topology σ(X,X ′) and hence the
semigroup is weakly continuous, hence in fact a C0-semigroup on X by Theorem
4.2.

The advantage of keeping also the norm of the Banach space as the subject
of study is that one can make simple but effective estimates, and, in particular,
use spectral theory in the Banach algebra L(X) of bounded linear operators on
X. The technical assumptions about the locally convex topology are useful for (1)
evaluating Riemann integrals and (2) for making norm estimates, as we shall see
shortly. We remark that the theory of Saks spaces, as described in ultimate detail
in [36], is strongly connected to the above set of assumptions. We also note that
the last condition (d) can be equivalently reformulated as the existence of a set P
of τ -continuous seminorms defining the topology τ , such that ∥x∥ = supp∈P p(x),
see [30, Remark 4.2] and [82, Lemma 4.4].

Situations where these assumptions are fulfilled include the following: dual spaces
X ′ with τ the weak∗ topology, space of bounded continuous functions (or some of
it closed subspaces) over a compactly generated, completely regular space with τ
the compact-open topology, and the Banach algebra of bounded linear operators
over a Banach space with τ the strong operator topology.

Definition 5.7. Let (X, ∥ · ∥, τ) be a triple satisfying Assumption 5.6. We call a
one-parameter operator semigroup (T (t))t≥0 τ -bi-continuous semigroup if

(1) (T (t))t≥0 is τ -strongly continuous, i.e., the map ξx : [0,∞) → (X, τ) defined
by ξx(t) = T (t)x is continuous for every x ∈ X.

(2) (T (t))t≥0 is exponentially bounded., i.e., there existM ≥ 1 and ω ∈ R such
that ∥T (t)∥ ≤Meωt for each t ≥ 0.

(3) For every t0 ≥ 0 and every norm-bounded τ -null sequence (xn)n∈N in X

one has T (t)xn
τ→ 0 uniformly for t ∈ [0, t0].

Based on the exponential boundedness, the type (M,ω) and the growth bound
ω0(T ) of a bi-continuous semigroup (T (t))t≥0 can be defined as above, after Propo-
sition 4.3. By virtue of Proposition 5.4 it is, of course, sufficient to assume opertor
norm boundedness on any open interval (0, a), a > 0.

Prominent examples include adjoints of C0-semigroups, Koopman semigroups,
Markov transition semigroups, and implemented semigroups. For more examples
we refer to the literature detailed below, but note here explicitly that the shift semi-
group, as a particular example of a Koopman semigroup, on the space of bounded
continuous functions over R is bi-continuous with respect to the compact-open
topology (but it is not a C0-semigroup for the supremum norm, as has been dis-
cussed above, see Example 2.4).
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The generator of bi-continuous semigroup is defined in complete analogy to the
C0-case:

Definition 5.8. Let (T (t))t≥0 be a τ -bi-continuous semigroup over (X, ∥ · ∥, τ).
The generator of (T (t))t≥0 is the linear operator A defined by

Ax := τ lim
t→0

T (t)x− x

t

with domain

dom(A) :=
{
x ∈ X : τ lim

t→0

T (t)x− x

t
exists and sup

t∈(0,1]

∥T (t)x− x∥
t

<∞
}
.

The most basic properties of these objects are collected in the following theorem:

Theorem 5.9. Let (T (t))t≥0 be a τ -bi-continuous semigroup with generator A.

(a) For each norm bounded sequence (xn)n∈N in dom(A) with (Axn)n∈N norm

bounded, xn
τ→ x and Axn

τ→ y for some x, y ∈ X, one has x ∈ dom(A)
and Ax = y. We call such an operator A τ -bi-closed.

(b) For each x ∈ X there is a norm-bounded sequence (xn)n∈N in dom(A) such

that xn
τ→ x. We say that dom(A) is τ -bi-dense.

(c) dom(A) is invariant under each T (t) and T (t)A = AT (t) for all t ≥ 0.
(d) For t > 0 and x ∈ X one has∫ t

0

T (s)x ds ∈ dom(A) and A

∫ t

0

T (s)x ds = T (t)x− x,

where the integral has to be understood as a τ -Riemann integral (as ex-
plained above).

(e) Each λ ∈ C with ℜλ > ω0(T ) belongs to the resolvent set ρ(A) (thus A is a
closed operator) and, moreover, for each x ∈ X

R(λ,A)x =

∫ ∞

0

e−λsT (s)x ds.

Here the integral is the norm limit of the τ -Riemann integrals
∫ N

0
.

(f) The space of strong continuity of (T (t))t≥0 is dom(A).

Based on the above resolvent representation one can easily prove that a generator
A of bi-continuous semigroup is a Hille-Yosida operator, i.e., satisfies the norm
estimates of the resolvents as in (ii) of Theorem 4.13. It follows that on a reflexive
Banach space the domain dom(A) of the generator of a bi-continuous semigroup is
dense, so by virtue of the Hille-Yosida theorem the semigroup is already strongly
continuous for the norm of the Banach space. In general, however dom(A) need
not be norm dense, i.e., by the above the space of strong continuity is a proper
subspace of X.

For the characterization of the generator it is useful to make the following defi-
nition:

Definition 5.10. A family B ⊂ L(X) is called τ -bi-equicontinuous if for each norm

bounded τ -null sequence (xn)n∈N one has Bxn
τ→ 0 uniformly for B ∈ B.

The following analogue of the Hille-Yosida theorem was found by Kühnemund,
see [90].

Theorem 5.11. Let A be a linear operator on X. For M ≥ 1 and ω ∈ R the
following assertions are equivalent:

(i) A generates τ -bi-continuous semigroup of (exponential) type (M,ω).
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(ii) A is τ -bi-closed, τ -bi-densely defined with (ω,∞) ⊆ ρ(A) and the family

{(λ− ω)nR(λ,A)n : λ > ω, n ∈ N}
is a norm bounded and τ -bi-equicontinuous subset of L(X).

In her PhD thesis Kühnemund also worked out a substantial part of approxi-
mation theory for bi-continuous semigroups, including Trotter-Kato type theorems,
the Lax-Chernoff product formula. In particular she showed the validity of Euler’s
formula (the convergence of the backward Euler scheme), in this context, called
also the Post-Widder inversion: For each bi-continuous semigroup

T (t)x = τ lim
m→∞

[
m
t R(mt , A)

]m
x = τ lim

m→∞

[
id−

(
t
mA

)]−m
x for each x ∈ X.

For a short proof relying on the C0-semigroup theory we refer to [30], see also the
more general paper by Cachia [35]. The picture of the basic theory of bi-continuous
semigroups is hence complete: one has one-to-one correspondence between genera-
tors, resolvents and semigroups, as described above for the C0-semigroups. In the
last twenty years or so the abstract theory has been augmented as follows (we do
not mention all the applications of the theory though):

Approximation. Large parts of approximation theory was worked out in the thesis
of Kühnemund [89]. Cachia in [35] put Euler’s formula for bi-continuous semigroups
in a more general context. Trotter-Kato theorems were further studied by Albanese
and Mangino in [3] with applications to Feller semigroups. Rational approximation
schemes (beyond backward Euler) are covered in [74] by Jara.

Perturbation. Elements of perturbation theory are to be found in [53], [54] with
applications in [51], [50]. Recent additions to perturbation theory are in the works
of Budde, see [31], [25], including also positive Miyadera [27] and Desch-Schappacher
[26] perturbations.

Extrapolation and interpolation spaces. Extrapolation spaces are constructed in
[30]. For interpolation theory with applications (e.g., to non-linear Schrödinger
equatios) we refer to the works [93] and [92] of Kunstmann.

Contraction semiroups. Lumer-Phillips type generation results were first obtained
by Budde and Wegner in [34], then by Kruse and Seifert in [87].

Miscellany. Adjoint bi-continuous semigroups are studied in [55], see also the re-
lated papers by Kunze [94] and by Manca [99]. Bi-continuous cosine families were
introduced by Budde in [29].

Mixed topologies and Saks spaces. The relation to classes of strongly continuous
semigroups on locally convex spaces (such as Saks spaces, as mentioned above) is
studied by Kraaij in [82], Kruse in [85], Kruse, Schwenninger in [86], see also [52,54].

Abstract Cauchy problems. Relation to solvability of Cauchy problems is studied
in [89], [52], Domanski, Langenbruch [41] more recently in [84] by Kruse. The
extension to control theory is due to Kruse and Seifert [88].

Asymptotic properties. Weak individual stability is studied in [46] but apart from
this paper not much is known in theory of asymptotic properties of bi-continuous
semigroups (for the case of semigroups on locally convex spaces we mention the
paper by Jacob and Wegner [73]). A systematic study of stability properties of
bi-continuous semigroups was initiated in [28]. Prior to that mean-ergodicity (i.e.,
Cesàro convergence) was studied by Albanese, Lorenzi, Manco in [2]. Concerning
applications we mention the paper [39] by Dobrick, in which he studies asymptotic
properties of flow semigroups on infinite networks, see also his PhD thesis [40].
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Applications. We present here a very narrow selection of topics where bi-continuous
semigroups can be useful (and only mention a few exemplary papers that are di-
rectly connected to the bi-continuous setting): parabolic and elliptic equations
with possibly degenerate and unbounded coefficients and transition semigroups of
Markov processes were studied by Farkas, Lorenzi [56], Es-Sarhir, Farkas [50, 51],
Gerlach, Glück, Kunze, [60], Da Parto, Röckner [37], Kunze [95]. Koopman semi-
groups induced by jointly continuous semi-flows on compactly generated, completely
regular spaces were studied by Dorroh, Neuberger [44, 45], Farkas, Kreidler [57].
Weighted and unweighted Koopman semigroups on spaces of holomorphic functions
are discussed by Kruse [84] and flows on infinite networks by Budde, Fijavž [32].

5.4. Integrated semigroups. Let A be a densely defined operator on a Banach
lattice E. If A is resolvent positive, i.e., there exists ω ∈ R with ω > s(A) and
R(λ,A) ≥ 0 for all λ > ω and the topological interior of E+ is non-empty, then
A is the generator of a (positive) C0-semigroup on E [8, Corollary 2.3]. Other
sufficient conditions for densely defined resolvent positive operators to be generate
a (positive) C0-semigroup were also studied by Arendt; see [8] or [6, Section II.2].

A natural way to construct resolvent positive operators that are not generators
of C0-semigroup is via perturbations. Indeed, on the Banach lattice E = {f ∈
C[0, 1] : f(0) = 0}, the operator

dom(A) := {f ∈ C1[0, 1] : f ′(0) = f(0) = 0}

Af(x) := f ′(x) +
1

2x
f(x) x ∈ (0, 1]

is resolvent positive, yet does not generate a C0-semigroup [6, Example 3.2]. The
first example of a resolvent positive operator that does not generate a C0-semigroup
was given by Batty and Davies in [22] and various other examples can be found
in [6, Section II.3].

Nevertheless, resolvent positive operators generate the so-called integrated semi-
group. Let (T (t))t≥0 be a C0-semigroup with generator A on a Banach space X.
Integrating the Laplace transform representation of the resolvent and integrating
by parts k ∈ N times, one gets

R(λ,A) = λk
∫ ∞

0

e−λtS(t) dt λ > ω0(T );

where

S(t) := x 7→
∫ t

0

(t− s)k−1

(k − 1)!
T (s)x ds (t ≥ 0).

In this case, S : [0,∞) → L(X) turns out to be strongly continuous function. This
motivates the following definition:

Definition 5.12. For k ∈ N0, an operator A on a Banach space X is called the
generator of a k-times integrated semigroup if there exists an exponentially bounded
strongly continuous function S : [0,∞) → L(X) and ω ∈ R such that

R(λ,A) = λk
∫ ∞

0

e−λtS(t) dt λ > ω.

In this case, we simply call S a k-times integrated semigroup (generated by A).

Of course, every 0-times integrated semigroup is a C0-semigroup and if A gen-
erates a k-times integrated semigroup, then it also generates an n-times integrated
semigroup for each n > k.
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Remark 5.13. If A generates a once-integrated semigroup (S(t))t≥0 on a Banach

space X, then the part of A in dom(A) generates a C0-semigroup (T (t))t≥0 on

dom(A) that satisfies

S(t)x =

∫ t

0

T (s)x dx (x ∈ dom(A));

see [9, Section 6].

If A is a resolvent positive operator on a Banach lattice E such that either A
is densely defined or E has order continuous norm, then A is the generator of a
once-integrated semigroup [6, Theorems 4.1 and 5.7]. Moreover, if A generates a
C0-semigroup on a Banach space X, then its Banach space dual A′ generates a
once-integrated semigroup on X ′ [10, Corollary 3.3.7].

The following is a generalization of the Hille-Yosida theorem for k-times inte-
grated semigroups, see [10, Theorem 3.3.2] for a proof:

Theorem 5.14. Let A be a densely defined linear operator on a Banach space X
and let M ≥ 0, ω ∈ R, and k ∈ N0. The following are equivalent.

(i) The operator A generates a k-times integrated semigroup (S(t))t≥0 on X
satisfying ∥S(t)∥ ≤Meωt for all t ≥ 0.

(ii) The interval (ω,∞) lies in ρ(A) and

sup
n∈N0

sup
λ>ω

∥∥∥∥∥ (λ− ω)n+1
(
λ−kR(λ,A)

)(n)
n!

∥∥∥∥∥ ≤M.

Above,
(
λ−kR(λ,A)

)(n)
denotes the nth derivative of λ 7→ λ−kR(λ,A). A

version of Theorem 5.14 for operators that are not necessarily densely defined can
be found in [10, Theorem 3.3.1]. Various other generation theorems can be found
in [10, Section 3.2] and [98, Section 3.6 and 3.7].

Integrated semigroups were introduced by Arendt in [6, 8, 9] and further devel-
oped by Neubrander [107], Kellermann [80], and Thieme [115]. For a systematic
treatment of the theory, we refer to [10, Section 3.2] or [98, Chapter 3], the mono-
graphs [38, 123], and the survey [117]. The definition of integrated semigroups has
also been extended to α-times integrated semigroups for α ≥ 0 by Hieber [71]. For
ergodic and spectral theory of integrated semigroups, we refer to [16, 17, 113, 114]
and the references therein. Application of integrated semigroups include – but are
not limited to – population biology [98, Section 3.8], delay equations [1], and second
order Cauchy problems [108].

Note that the term semigroup is an abuse of notation for integrated semigroups.
Indeed, if (S(t))t≥0 is a once-integrated semigroup, then of course S(0) ̸= id (Re-
mark 5.13), and it only satisfies the functional equation

S(r)S(t) =

∫ r

0

(S(t+ τ)− S(τ)) dτ = S(t)S(r) t, r ≥ 0. (5.1)

Actually, if S : [0,∞) → L(X) is a strongly continuous function satisfying S(0) = 0
and (5.1) such that its degeneration space

NS := {x ∈ X : S(t)x = 0 for all t ≥ 0} = {0},

then (S(t))t≥0 is a once-integrated semigroup generated by the operator A defined
as: x ∈ dom(A) and Ax = y if and only if

S(t)x− tx =

∫ t

0

S(r)y dr t ≥ 0;
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see [115, Theorem 3.6]. In this case, A is densely defined if and only if (S(t))t≥0 is
even a C0-semigroup [10, Corollary 3.3.11]. Furthermore, if (S(t))t≥0 is exponen-
tially bounded, then by [115, Proposition 3.10] (ω,∞) ⊆ ρ(A) and

R(λ,A) = λ

∫ ∞

0

e−λtS(t) dt λ > ω.

In this way, we get a one-to-one relationship between the semigroup, the generator,
and the resolvent. On the other hand, if the degeneration space NS ̸= {0}, then
there still exists a family of pseudo-resolvents (R(λ))λ>ω such that

R(λ) = λ

∫ ∞

0

e−λtS(t) dt λ > ω.

Hence, there exists a unique multi-valued operator A such that R( · ) = R( · , A).
As one would expect (S(t))t≥0 is again a once-integrated semigroup generated by
A; we refer to [115, Theorem 3.14 and 3.15] for details.

Let us describe how integrated semigroups correspond to solutions of initial value
problems [10, Corollary 3.2.11 and Theorem 3.2.13].

Theorem 5.15. Let A be generator of a k-times integrated semigroup for k ∈ N
on a Banach space X. Corresponding to f ∈ L1([0, τ ], X) with τ > 0, consider the
abstract Cauchy problem{

u̇(t) = Au(t) + f(t) for all t ≥ τ,

u(0) = x.
(ACPf )

The following assertions hold.

(a) If x ∈ dom(Ak+1), then (ACPf ) has a unique classical solution for f = 0.
(b) If f ∈ Ck([0, τ ], X) and the vectors

x0 = x, xj+1 = Axj + f (j)(0) j ∈ {0, . . . , k − 1}

all lie in dom(A), then (ACPf ) has a unique mild solution.
(c) If f ∈ Ck+1([0, τ ], X) and the vectors

x0 = x, xj+1 = Axj + f (j)(0) j ∈ {0, . . . , k}

all lie in dom(A), then (ACPf ) has a unique classical solution.

Conversely, if ρ(A) ̸= ∅ and (5.1) has a unique classical exponentially bounded
solution for f = 0 and every x ∈ dom(Ak+1), then A is the generator of an expo-
nentially bounded k-times integrated semigroup on X.

We close this subsection by noting that there is also a variety of perturbation
results for integrated semigroups available; we refer the reader to the references
[75,76,81,100,104] for details.

6. Positive semigroups

6.1. Function spaces and Banach lattices. Before we discuss the topic of pos-
itive semigroups in detail, let us give a brief primer on Banach lattices in this
subsection; these spaces provide the theoretical framework in which much of the
theory of positive semigroups is developed.
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The order on function spaces. A common feature of many classical function spaces
such as, for instance, Lp(Ω, µ) for a measure space (Ω, µ) and p ∈ [1,∞] or the
space Cb(Ω) of bounded continuous functions over a topological space Ω, is that
they admit a partial order that is compatible with the vector space structure. On
Lp-spaces this order is defined pointwise almost everywhere and on Cb(Ω) it is given
pointwise. Moreover, any two functions f, g in such a space have a supremum f ∨ g
and an infimum f ∧ g. Note that it is not necessary to define this suprema and
infima pointwise (or pointwise almost everywhere). Rather, one can define them to
be the smallest upper bound and the largest lower bound of f and g with respect
to the partial order on the function space and then derive that they coincide with
the pointwise (almost everywhere) supremum and infimum.

While this distinction might seem overly nuanced at first glance, the distinction
becomes important when one considers suprema and infima of infinite sets. In
addition, and more importantly for our purposes, defining the suprema and infima
of two vectors with respect to the order on the vector space opens the door for
an axiomatic treatment of ordered vector spaces where such finite suprema and
infima always exist. These are the so-called vector lattices which are sometimes
also referred to as Riesz spaces. In such a vector lattice E one can define the
modulus of each vector f as |f | := f ∨ (−f). For the theory of Riesz spaces, we
refer, for instance, to the books [97, 125, 126]. The theory of more general ordered
vector spaces is also classical. Studying them specifically by embedding them into
vector lattices has seen a lot of recent activity within the theory of the so-called
pre-Riesz spaces, see the monograph [77]. Throughout we will use the notation E+

for the cone of positive elements of a vector lattice E.

Banach lattices and positive operators. If a vector lattice E is, at the same time, a
Banach space and the norm satisfies the condition

|f | ≤ |g| ⇒ ∥f∥ ≤ ∥g∥
for all f, g ∈ E, then E is called a Banach lattice. Banach lattices can, as indicated
above, seen as axiomatic generalizations of classical function spaces. For a detailed
treatment, we refer to the monographs [5,103,112,121]. The interaction of Banach
lattices with other subjects in infinite-dimensional analysis is explained in a lot of
detail in the monograph [4].

A bounded linear operator T on a Banach lattice E is called positive, which we
notate by T ≥ 0, if TE+ ⊆ E+. A deep structure theory of positive operators on
Banach lattices is available and can be found in the aforementioned monographs.
Moreover, motivated by the classical Perron–Frobenius theorem on positive matri-
ces, a far-reaching spectral theory of positive operators on Banach lattices has been
developed. See for instance [62] for a recent overview and [66] for a more classical
survey.

6.2. Positivity. We are mainly interested in semigroups that consist of positive
operators.

Definition 6.1. A semigroup (T (t))t≥0 on a Banach lattice E is called positive (or
positivity preserving) if T (t) ≥ 0 for every t ∈ [0,∞).

For C0-semigroups a very detailed theory of positivity is known. We refer, in
particular, to the classical book [106] and the more recent one [21]. It is not difficult
to characterize the positivity of C0-semigroups in terms of the resolvent:

Proposition 6.2. Let T = (T (t))t≥0 be a C0-semigroup with generator A on a
Banach lattice E. The following are equivalent:

(i) The semigroup T is positive.
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(ii) For all sufficiently large λ ∈ R the resolvent R(λ,A) is a positive operator.

The implication “(i) ⇒ (ii)” is a consequence of the representation of the resol-
vent as the Laplace transform of the semigroup and the converse implication follows
from Euler’s formula for the semigroup in terms of the resolvent. For semigroups
with time regularity other than C0, a similar equivalence remains true if those for-
mulas are valid in an appropriate topology τ on E and the positive cone E+ is
closed with respect to τ . Characterizing positivity in terms of the generator rather
than the resolvent is a more delicate matter. For C0-semigroups this can be done
by an abstract version of Kato’s inequality as shown in [7]

A particular focus in the theory of positive semigroups is on their long-term
behaviour. For this topic we refer, in addition to the aforementioned books [21,106],
to the monographs [47,105].

6.3. Irreducible and positivity improving semigroups. Irreducibility of a
semigroup means, loosely speaking, that for every positive initial value the or-
bit “visits” each point in the space at some time. To make this notion precise, we
first need the concept of an ideal in a Banach lattice.

Ideals and quasi-interior points. In classical function spaces, it is often useful to
consider a subspace of functions that vanish on a certain set. In the more general
setting of Banach lattices, this can be made precise by using the notion of ideals:

Definition 6.3. Let E by a vector lattice. An ideal (or, more precisely, an order
ideal) in E is a vector subspace I ⊆ E with the following property: if x ∈ E and
y ∈ I satisfy |x| ≤ |y|, then also x ∈ I.

A simple reformulation of the definition of ideals is as follows: a vector subspace
I ⊆ E is an ideal if and only if x ∈ I whenever y ∈ I and x ∈ E are such that
0 ≤ x ≤ y. The following examples indicate how one should think intuitively about
closed ideals in a Banach lattice:

Examples 6.4.

(a) If (Ω, µ) is a σ-finite measure space and p ∈ [1,∞), then the closed ideals
in Lp(Ω, µ) are precisely the sets of the form{

f ∈ Lp(Ω, µ) | f(ω) = 0 for almost all ω ∈ A
}
,

where A ⊆ Ω is measurable [21, Proposition 10.15].
(b) Let L be a locally compact Hausdorff space. Then the closed ideals in

C0(L) are precisely the sets of the form{
f ∈ C0(L) | f(ω) = 0 for all ω ∈ A

}
,

where A ⊆ L is closed [21, Proposition 10.14].
(c) The space c0 of sequences that converge to 0 is a closed ideal in the Ba-

nach lattice c of convergent sequences and also in the Banach lattice ℓ∞ of
bounded sequences.

These examples illustrate the concept of closed ideals – however, there are many
more non-closed ideals:

Examples 6.5.

(a) If (Ω, µ) is a finite measure space and let 1 ≤ p < q ≤ ∞. Then Lq(Ω, µ) is
an ideal in Lp(Ω, µ) that is not closed unless Lp(Ω, µ) is finite-dimensional.

(b) If 1 ≤ p < q ≤ ∞, then the sequence space ℓp is a non-closed ideal in ℓq.
(c) The space C([0, 1]) is not an ideal in Lp([0, 1]) for any p ∈ [1,∞].
(d) The space c00 of sequences with only finitely many non-zero entries is a

non-closed ideal in each of the Banach lattices c0, c, and ℓ
p for p ∈ [1,∞].
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(e) Let E be a Banach lattice and u ∈ E+. Then the set

Eu := {x ∈ E | |x| ≤ cu for some c ∈ [0,∞)}

is the smallest ideal in E that contains u. It is called the principal ideal
generated by u. This ideal is only closed in general.

If one takes u = 1 in the space E = Lp(Ω, µ) for some p ∈ [1,∞] and a
finite measure space (Ω, µ), then Eu = L∞(Ω, µ) – which is a case that has
already occurred in Example (a).

Irreducible semigroups. By using closed ideals, one can define the concept irre-
ducibility in a quite general setting:

Definition 6.6. A semigroup T = (T (t))t≥0 on a Banach lattice E is called irre-
ducible if there are no closed ideals I ⊆ E that are invariant under T except for the
trivial ones {0} and E.

Similarly, a positive linear operator S ∈ L(E) is called irreducible if there are no
closed ideals I ⊆ E invariant under T except for the trivial ones {0} and E.

Note that this is different from a stronger irreducibility notion that occurs, for
instance, in representation theory. There one considers invariant closed vector
subspaces rather than only invariant closed ideals.

For positive semigroups, irreducibility can be characterized by testing against
positive vectors and positive functionals. To state the theorem let us recall the
following notion: a Banach lattice E is said to have order continuous norm if every
decreasing net in E+ with infimum 0 converges in norm to 0. Typical examples for
Banach lattices with order continuous norm are all Lp-spaces for p ∈ [1,∞) and
the space c0 of sequences that converge to 0.

Theorem 6.7. Let T = (T (t))t≥0 be a positive semigroup on a Banach lattice E.
Consider the following assertions:

(i) The semigroup T is irreducible.
(ii) For all non-zero f ∈ E+ and all non-zero φ ∈ E′

+ there exists t ∈ [0,∞)
such that ⟨φ, T (t)f⟩ ≠ 0.

(iii) For all non-zero 0 ≤ f, g ∈ E there exists a time t ∈ [0,∞) such that
f ∧ T (t)g ̸= 0.

One always has (i) ⇔ (ii) ⇒ (iii). If E has an order continuous norm, all assertions
are equivalent.

Proof. “(i) ⇒ (ii)”: Assume that (ii) does not hold. Then we can find a non-zero
vector f ∈ E+ and a non-zero functional φ ∈ E′

+ such that ⟨φ, T (t)f⟩ = 0 for all
t ∈ [0,∞). The set

I := {g ∈ E | ⟨φ, T (t) |g|⟩ = 0 for all t ∈ [0,∞)}.

is a T -invariant closed ideal in E and I ̸= {0} as f ∈ I. But we also have I ̸= E,
since otherwise

0 ≤ |⟨φ, g⟩| ≤ ⟨φ, |g|⟩ = ⟨φ, T (0) |g|⟩ = 0

for all g ∈ E, which is a contradiction to φ ̸= 0. Hence, T is not irreducible.
“(ii) ⇒ (i)”: Assume that T is not irreducible and let {0} ⊊ I ⊊ E be a T -

invariant closed ideal in E. A quotient space argument shows that there exists a
non-zero functional 0 ≤ φ ∈ E′ which vanishes on I. Moreover, we can find a
non-zero vector 0 ≤ f ∈ I since I ̸= {0}. Since the semigroup leaves I invariant
ones has T (t)f ∈ I and in turn, ⟨φ, T (t)f⟩ = 0 for all t ∈ [0,∞).
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“(i) ⇒ (iii)”: Assume that (iii) is not true. Then we can find non-zero vectors
0 ≤ f, g ∈ E such that f ∧ T (t)g = 0 for all t ∈ [0,∞). We define

I := {h ∈ E : f ∧ T (t) |h| = 0 for all t ∈ [0,∞)}.

Then I is a closed ideal in E and I ̸= {0} since g ∈ I. On the other hand, we have
0 ̸= f ∧ f = f ∧ T (0) |f |, so f ̸∈ I; this proves that I ̸= E. Finally, we note that I
is T -invariant: for every h ∈ I and s ∈ [0,∞) we have

0 ≤ f ∧ T (t) |T (s)h| ≤ f ∧ T (t+ s) |h| = 0

for all t ∈ [0,∞), so T (s)h ∈ I. Hence, T is not irreducible.
“(iii) ⇒ (i)”: Now assume that E has order continuous norm and suppose that

T is not irreducible. Then there exists a T -invariant closed ideal {0} ⊊ I ⊊ E
in E. As I has order continuous norm, I is automatically a so-called band in E,
see [103, Corollary 2.4.4]. Hence, we can find a non-zero vector 0 ≤ g ∈ I and
a non-zero vector 0 ≤ f ∈ E which is disjoint to all elements of I. Due to the
invariance of I, this implies f ∧ T (t)g = 0 for all t ∈ [0,∞). □

The equivalence of (i) and (ii) in Theorem 6.7 is well-known for C0-semigroups,
see for instance [106, Definition C-III-3.1 on p. 306], but as the argument above
shows it remains true without any time regularity assumption. We note in passing
that in [106, Definition C-III-3.1 on p. 306] it is also claimed that (iii) is equivalent
to (i) and (ii) for C0-semigroups on arbitrary Banach lattices. This is not correct,
though, as the following example shows:

Remark 6.8. Let E = C([0, 1]), let λ ∈ E′ denote the Lebesgue measure and
fix an arbitrary function u ∈ E which has integral ⟨λ, u⟩ = 1 and which satisfies
u(0) = u(1) = 0 and u(ω) > 0 for all ω ∈ (0, 1). The operator P := u ⊗ λ ∈ L(E)
is a projection and we consider the C0-semigroup T = (T (t))t≥0 := (etP )t∈[0,∞)

generated by P . Note that

T (t) = etP = id+(et − 1)P for all t ∈ [0,∞)

since P is a projection. For all non-zero 0 ≤ f, g ∈ E we choose, for instance, t = 1
and obtain T (t)g ≥ (e− 1)Pg ≥ Pg = ⟨λ, g⟩u and thus,

f ∧ T (t)g ≥ f ∧
(
⟨λ, g⟩u

)
> 0.

Yet, T is not irreducible since the ideal I := {f ∈ E | f(0) = f(1) = 0} is T -
invariant.

For a positive C0-semigroup T on a Banach lattice E, irreducibility can be char-
acterized in terms of the resolvent: if A denotes the generator of T and λ > s(A),
then T is irreducible if and only if the operator R(λ,A) is irreducible if and only
if R(λ,A) maps every non-zero vector f ∈ E+ to a quasi-interior point; see for in-
stance [106, Definition C-III-3.1(i), (iv) and (v) on p. 306] or [21, Proposition 14.10
on pp. 222–223]. From this one can easily derive that the irreducibility of a positive
C0-semigroups implies that none of the semigroup operators has a positive non-zero
vector in its kernel; see for instance [106, Theorem C-III-3.2(a) on p. 306]. Yet, we
show now that the latter result remains true without any time regularity. This
result is, to the best of our knowledge, new and the proof is a bit more involved.
Note that we have to exclude that case dimE = 1 since in the one-dimensional case
the semigroup which is 0 for all t > 0 is irreducible; in the C0-case this subtlety
cannot occur.

Theorem 6.9. Let T = (T (t))t≥0 be a positive semigroup on a Banach lattice E. If
dimE ≥ 2, then one has T (t)f ̸= 0 for every non-zero f ∈ E+ and every t ∈ [0,∞).
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Proof. We proceed in three steps:
Step 1: We show that there exists a time t > 0 such that T (s) ̸= 0 for all

s ∈ (0, t]. Assume the contrary. Then we can find a sequence of times sn ↓ 0 such
that T (sn) = 0 for all n. By the semigroup law, this implies that T (s) = 0 for
all s ∈ (0,∞). Since dimE ≥ 2 there exists a closed ideal {0} ⊊ I ⊊ E and it
follows from T (s) = 0 for all s > 0 that I is T -invariant, which contradicts the
irreducibility of T .

Step 2: We show that if f ∈ E+ is non-zero and T (t)f = 0 for some t ∈ [0,∞),
then T (s) = 0 for all s ≥ t. So assume that such f and t are given and observe that
T (s)f = 0 for all s ≥ t by the semigroup law. Now fix s ∈ [t,∞) and let ψ ∈ E′

+.
If φ := T (s)′ψ ∈ E′

+ were non-zero we could find, by Theorem 6.7, a time r ≥ 0
such that the number ⟨ψ, T (s+ r)f⟩ = ⟨φ, T (r)f⟩ is non-zero – but this cannot be
true since s+ r ≥ t. So T (s)′ψ = 0 for all ψ′ ∈ E′

+ and hence T (s) = 0, as claimed.
Step 3: We show the conclusion of the theorem. It follows from Steps 1 and 2

that there exists a time t > 0 such that T (s)f ̸= 0 for all s ∈ (0, t] and all non-zero
f ∈ E+. It thus follows from the semigroup law and the positivity of the semigroup
that T (s)f ̸= 0 for all non-zero f ∈ E+, all s ∈ (0, nt] and every integer n ≥ 1.
This proves the theorem. □

Positivity improving semigroups. Many concrete semigroups have the property that,
for any positive non-zero initial vector, they instantly spread the “mass” of the vec-
tor throughout the space. This behaviour can be described mathematically in the
following way:

Definition 6.10. A semigroup T = (T (t))t≥0 on a Banach lattice E is called
positivity improving or strongly positive if for every t ∈ (0,∞) and every non-zero
f ∈ E+, the vector T (t)f is a quasi-interior point.

It is an intriguing observation that, for positive semigroups, irreducibility to-
gether with analyticity assumptions already implies that the semigroup is positivity
improving.

Theorem 6.11. Let T = (T (t))t≥0 be a positive and irreducible semigroup on a
complex Banach lattice E and let dimE ≥ 2. Assume that there exists a number
θ > 0 and an analytic mapping T̃ from the open sector

{z ∈ C \ {0} | |arg z| < θ}

to L(E) that coincides with T on (0,∞). Then T is positivity improving.

For C0-semigroups this is a classical result (and also holds if dimE = 1), see for
instance [106, Theorem C-III-3.2(b) on p. 306]. For the more general case considered
in Theorem 6.11 the argument has to be adapted a bit; the details can be found
in the recent paper [59, Theorem A.1]. More precisely, it is shown there that,
for a positive semigroup which extends to an analytic mapping on a sector, and for
f ∈ E+ and φ ∈ E′

+ one either has ⟨φ, T (t)f⟩ > 0 for all t ∈ (0,∞) or ⟨φ, T (t)f⟩ = 0
for all t ∈ (0,∞). Together with Theorem 6.9 this readily gives Theorem 6.11.

Persistently irreducible semigroups. Let T be a semigroup on a Banach lattice E.
Irreducibility of T means, according to Definition 6.6, that no non-trivial closed
ideal is invariant under T . On some occasions it can be useful to know an even
stronger property, namely that no non-trivial closed ideal is invariant under any
tail of T :

Definition 6.12. Let T = (T (t))t≥0 be a semigroup on a Banach lattice E.

(a) A set S ⊆ E is called eventually invariant under T if there exists a time
t0 ≥ 0 such that T (t)I ⊆ I for all t ≥ t0.
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(b) The semigroup T is called persistently irreducible if {0} and E are the only
closed ideals in E that are eventually invariant under E.

Persistent irreducibility was recently introduced and studied in [15] in the con-
text of eventually positive semigroups. The focus in the reference [15] was on the
C0-case. There it was also proved the persistent irreducibility is equivalent to irre-
ducibility for positive C0-semigroups [15, Proposition 3.5]. Let us now show that
this remains true without any time regularity assumption. Again, one has to ex-
clude the one-dimensional case to avoid the semigroup T that satisfies T (t) = 0 for
all t ∈ (0,∞).

Theorem 6.13. Let T = (T (t))t≥0 be a positive semigroup on a Banach lattice E.
Consider the following assertions:

(i’) The semigroup T is irreducible.
(i) The semigroup T is persistently irreducible.
(ii) For all non-zero f ∈ E+, all non-zero φ ∈ E′

+ and all t0 ≥ 0 there exists
t ∈ [t0,∞) such that ⟨φ, T (t)f⟩ ≠ 0.

(iii) For all non-zero 0 ≤ f, g ∈ E and all t0 ≥ 0 there exists a time t ∈ [t0,∞)
such that f ∧ T (t)g ̸= 0.

One always has (i’) ⇔ (i) ⇔ (ii) ⇒ (iii). If E has order continuous norm, all
assertions are equivalent.

Proof. “(i) ⇒ (i’)”: This implication is clear.
“(i’) ⇒ (ii)”: Let T be irreducible, let f ∈ E+ and φ ∈ E′

+ both be non-zero
and let t0 ∈ [0,∞). As dimE ≥ 2, the irreduciblity of T implies that T (t0)f ̸= 0
according to Theorem 6.9. Hence, by the weak characterization of irreducibility in
Theorem 6.7 there exists a time t ≥ 0 such that

⟨φ, T (t+ t0)f⟩ = ⟨φ, T (t)T (t0)f⟩ > 0.

“(ii) ⇒ (i)”: If (i) fails, then there exists a closed ideal {0} ⊊ I ⊊ E and t0 ≥ 0
such that T (t)I ⊆ I for all t ≥ t0. As I is proper and non-zero, there exists non-zero
f ∈ E+ and a non-zero φ ∈ E′

+ that vanishes on I. In particular,

⟨φ , T (t)f⟩ = 0

for all t ≥ t0, a contradiction.
“(i’) ⇒ (iii)”: Let T be irreducible, let f, g ∈ E+ and φ ∈ E′

+ both be non-zero
and let t0 ∈ [0,∞). Again, the irreducibility of T together with dimE ≥ 2 imply,
according to Theorem 6.9, that T (t0)g ̸= 0. So it follows from Theorem 6.7 that
there exists a time t ≥ 0 such that

f ∧ T (t+ t0)g = f ∧ (T (t)T (t0)g) ̸= 0.

“(iii) ⇒ (i’)”: Now assume that E has order continuous norm. Then the desired
implication follows from Theorem 6.7. □

6.4. Relatively uniformly continuous semigroups. Since vector-valued inte-
grals and differentials are main tools in the study of various classes of operator
semigroups, some kind of topology is typically necessary to give meaning to these
integrals. However, within the framework of positive semigroups, an alternative is
possible. For semigroups defined on a vector lattice E one can use order theoretic
rather than topological notions of convergence to define integrals and differentials.
This makes it possible to develop a rich theory of (positive) operator semigroups
on vector lattices without any norm or topology.

Let us recall the relevant order-theoretic notions first:
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Definition 6.14. Let E be an Archimedean vector lattice. A net (fj) in E is said
to be relatively uniformly convergent or, for short, ru-convergent to a vector f ∈ E
if there exists a vector u ∈ E+ such that for every ε > 0, there exists an index j0
such that |fj − f | ≤ εu for all j ≥ j0.

In this case, the vector u is called a regulator of the ru-convergence of (fj) to f .

Based on the notion of ru-convergence one can define relatively uniformly con-
tinuous semigroups or, for short, ruc-semigroups: a semigroup T = (T (t))t≥0 of
positive linear maps on an Archimedean vector lattice E is called a ruc-semigroup
if, for each f ∈ E, the net (T (t)f)t∈(0,∞) converges relatively uniformly to f , where
the index set (0,∞) of the net is endowed with the converse of the usual order of
real numbers.

Relatively uniformly continuous semigroups were introduced in [78] and gener-
ation theorems for them were proved in [79]. If the underlying vector lattice E is
even a Banach lattice, the notions of ruc-semigroups and C0-semigroups are both
defined and one can compare both notions. Indeed, it is not difficult to see that
if a positive semigroup on a Banach lattice E is a ruc-semigroup, then it is also
C0-semigroup. Conversely, it was shown in [64] that a positive C0-semigroup on E
is a ruc-semigroup if and only if every orbit of the semigroup is order bounded on
the time interval [0, 1]. Since the order boundedness of orbits is a way to describe
a so-called maximal inequality for the semigroup, this shows a connection between
the theory of ruc-semigroups and harmonic analysis.
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